Skip to main content
Log in

Emission of terahertz waves in the interaction of a laser pulse with clusters

  • Plasma Radiation
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A theory of generation of terahertz radiation in the interaction of a femtosecond laser pulse with a spherical cluster is developed for the case in which the density of free electrons in the cluster plasma exceeds the critical value. The spectral, angular, and energy characteristics of the emitted terahertz radiation are investigated, as well as its spatiotemporal structure. It is shown that the directional pattern of radiation has a quadrupole structure and that the emission spectrum has a broad maximum at a frequency nearly equal to the reciprocal of the laser pulse duration. It is found that the total radiated energy depends strongly on the cluster size. Analysis of the spatiotemporal profile of the terahertz signal shows that it has a femtosecond duration and contains only two oscillation cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Hamster, A. Sullivan, S. Gordon, W. White, and R. W. Falcone, Phys. Rev. Lett. 71, 2725 (1993).

    Article  ADS  Google Scholar 

  2. N. Yugami, T. Higashiguchi, H. Gao, S. Sakai, K. Takahashi, H. Ito, Y. Nishida, and T. Katsouleas, Phys. Rev. Lett. 89, 065003 (2002).

    Article  ADS  Google Scholar 

  3. D. Dorranian, M. Starodubtsev, H. Kawakami, H. Ito, N. Yugami, and Y. Nishida, Phys. Rev. E 68, 026409 (2003).

    Article  ADS  Google Scholar 

  4. P. Sprangle, J. R. Penano, B. Hafizi, and C. A. Kapetanakos, Phys. Rev. E 69, 066415 (2004).

    Article  ADS  Google Scholar 

  5. C. B. Schroeder, E. Esarey, J. van Tilborg, and W. P. Leemans, Phys. Rev. E 69, 016501 (2004).

    Article  ADS  Google Scholar 

  6. J. van Tilborg, C. B. Schroeder, C. V. Filip, Cs. Tóth, C. G. R. Geddes, G. Fubiani, R. Huber, R. A. Kaindl, E. Esarey, and W. P. Leemans, Phys. Rev. Lett. 96, 014801 (2006).

    Article  ADS  Google Scholar 

  7. C. Weiss, R. Wallenstein, and R. Beigang, Appl. Phys. Lett. 77, 4160 (2000).

    Article  ADS  Google Scholar 

  8. F. Kadlec, P. Kuzel, and J.-L. Coutaz, Opt. Lett. 29, 2674 (2004).

    Article  ADS  Google Scholar 

  9. F. Kadlec, P. Kuzel, and J.-L. Coutaz, Opt. Lett. 30, 1402 (2005).

    Article  ADS  Google Scholar 

  10. G. H. Welsh and K. Wynne, Opt. Express 17, 2470 (2009).

    Article  ADS  Google Scholar 

  11. E. V. Suvorov, R. A. Akhmedzhanov, D. A. Fadeev, I. E. Ilyakov, V. A. Mironov, and B. V. Shishkin, Opt. Lett. 37, 2520 (2012).

    Article  ADS  Google Scholar 

  12. G. A. Askar’yan, Sov. Phys. JETP 15, 943 (1962).

    Google Scholar 

  13. L. M. Gorbunov and A. A. Frolov, JETP 83, 967 (1996).

    ADS  Google Scholar 

  14. J. Yoshii, C. H. Lai, T. Katsouleas, C. Joshi, and W. B. Mori, Phys. Rev. Lett. 79, 4194 (1997).

    Article  ADS  Google Scholar 

  15. L. M. Gorbunov and A. A. Frolov, JETP 102, 894 (2006).

    Article  ADS  Google Scholar 

  16. A. A. Frolov, Plasma Phys. Rep. 33, 1014 (2007).

    Article  ADS  Google Scholar 

  17. S. A. Uryupin and A. A. Frolov, JETP 114, 878 (2012).

    Article  ADS  Google Scholar 

  18. S. A. Uryupin and A. A. Frolov, Tech. Phys. 59, 892 (2014).

    Article  Google Scholar 

  19. T. Nagashima, H. Hirayama, K. Shibuya, M. Hangyo, M. Hashida, S. Tokita, and S. Sakabe, Opt. Express 17, 8807 (2009).

    Article  Google Scholar 

  20. F. Jahangiri, M. Hashida, T. Nagashima, S. Tokita, M. Hangyo, and S. Sakabe, Appl. Phys. Lett. 99, 261503 (2011).

    Article  ADS  Google Scholar 

  21. T. I. Oh, Y. S. You, N. Jhajj, E. W. Rosenthal, H. M. Milchberg, and K. Y. Kim, New J. Phys. 15, 075002 (2013).

    Article  ADS  Google Scholar 

  22. M. Kumar and V. K. Tripathi, Phys. Plasmas 18, 053105 (2011).

    Article  ADS  Google Scholar 

  23. C. Bohren, and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

    Google Scholar 

  24. M. Born, and E. Wolf, Principles of Optics (Pergamon, New York, 1964).

    Google Scholar 

  25. V. P. Krainov and M. B. Smirnov, Phys. Usp. 43, 901 (2000).

    Article  ADS  Google Scholar 

  26. A. Sh. Abdullaev, Yu. M. Aliev, and A. A. Frolov, Sov. J. Plasma Phys. 12, 475 (1986).

    Google Scholar 

  27. Yu. M. Aliev, V. Yu. Bychenkov, and A. A. Frolov, Tr. FIAN 219, 55 (1992).

    Google Scholar 

  28. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1961).

    MATH  Google Scholar 

  29. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Nauka, Moscow, 1973; Pergamon, Oxford, 1975).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Frolov.

Additional information

Original Russian Text © A.A. Frolov, 2016, published in Fizika Plazmy, 2016, Vol. 42, No. 7, pp. 627–637.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolov, A.A. Emission of terahertz waves in the interaction of a laser pulse with clusters. Plasma Phys. Rep. 42, 637–646 (2016). https://doi.org/10.1134/S1063780X16070035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X16070035

Navigation