Skip to main content
Log in

Stabilization of liquid hydrocarbon fuel combustion by using a programmable microwave discharge in a subsonic airflow

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Under conditions of a programmable discharge (a surface microwave discharge combined with a dc discharge), plasma-enhanced combustion of alcohol injected into a subsonic (M = 0.3–0.9) airflow in the drop (spray) phase is stabilized. It is shown that the appearance of the discharge, its current-voltage characteristic, the emission spectrum, the total emission intensity, the heat flux, the electron density, the hydroxyl emission intensity, and the time dependences of the discharge current and especially discharge voltage change substantially during the transition from the airflow discharge to stabilized combustion of the liquid hydrocarbon fuel. After combustion stabilization, more than 80% of liquid alcohol can burn out, depending on the input power, and the flame temperature reaches ∼2000 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Konstantinovskii, V. M. Shibkov, and L. V. Shibkova, Kinet. Kataliz, No. 6, 821 (2005).

  2. S. A. Bozhenkov, S. M. Starikovskaia, and A. Yu. Starikovskii, Combust. Flame 133, 133 (2003).

    Article  Google Scholar 

  3. S. M. Starikovskaya, J. Phys. D 39, R265 (2006).

    Article  ADS  Google Scholar 

  4. A. Y. Starikovskii, N. B. Anikin, I. N. Kosarev, et al., J. Propulsion Power 24, 1182 (2008).

    Article  Google Scholar 

  5. I. V. Adamovich, W. R. Lempert, M. Nishihara, et al., J. Propulsion Power 24, 1198 (2008).

    Article  Google Scholar 

  6. A. Dutta, I. Choi, M. Uddi, et al., in Proceedings of the 47th AIAA Aerospace Sciences Meeting and Exhibition, Orlando, FL, 2009, Paper AIAA-2009-0821.

  7. V. A. Bityurin, in Proceedings of the 39th AIAA Aerospace Sciences Meeting and Exhibition, Reno, NV, 2001, Paper AIAA-2001-2874.

  8. A. Bocharov and V. Bityurin, in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibition, Reno, NV, 2006, Paper AIAA-2006-1009.

  9. I. V. Kochetov, A. P. Napartovich, and S. B. Leonov, High Energy Chem. 40, 98 (2006).

    Article  Google Scholar 

  10. I. A. Kossyi, in Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibition, Reno, NV, 2007, Paper AIAA-2007-0429.

  11. V. A. Vinogradov, Y. M. Shikhman, I. A. Kossiy, et al., in Proceedings of the 47th AIAA Aerospace Sciences Meeting and Exhibition, Orlando, FL, 2009, Paper AIAA-2009-0494.

  12. I. Esakov, L. Grachev, and K. Khodataev, in Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibition, Reno, NV, 2004, Paper AIAA-2004-0840.

  13. K. V. Khodataev, in Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibition, Reno, NV, 2007, Paper AIAA-2007-0431.

  14. V. M. Shibkov, D. A. Vinogradov, A. V. Voskanyan, et al., Vestnik Mosk. Univ., Ser. Fiz. Astron. 41(6), 64 (2000).

    Google Scholar 

  15. V. M. Shibkov, V. A. Chernikov, A. P. Ershov, et al., in Proceedings of the 32nd AIAA Plasmadynamics and Lasers Conference and 4th Weakly Ionized Gases Workshop, Anaheim, CA, 2001, Paper AIAA-2001-3087.

  16. V. M. Shibkov, V. A. Chernikov, S. A. Dvinin, et al., in Proceedings of the 15th International Symposium on Plasma Chemistry, Orleans, 2001, Vol. 1, p. 179.

  17. V. M. Shibkov, A. V. Chernikov, V. A. Chernikov, et al., in Microwave Discharges: Fundamentals and Applications, Ed. by Ed. Yu. A. Lebedev (Moscow, Yanus-K, 2001), p. 145.

    Google Scholar 

  18. V. M. Shibkov, A. P. Ershov, V. A. Chernikov, and L. V. Shibkova, Tech. Phys. 50, 455 (2005).

    Article  Google Scholar 

  19. V. M. Shibkov, S. A. Dvinin, A. P. Ershov, and L. V. Shibkova, Tech. Phys. 50, 462 (2005).

    Article  Google Scholar 

  20. S. A. Dvinin, V. M. Shibkov, and V. V. Mikheev, Plasma Phys. Rep. 32, 601 (2006).

    Article  ADS  Google Scholar 

  21. V. M. Shibkov, S. A. Dvinin, A. P. Ershov, et al., Plasma Phys. Rep. 33, 72 (2007).

    Article  ADS  Google Scholar 

  22. L. V. Shibkova, Vestn. Mosk. Univ., Ser. Fiz. Astronom. 45(5), 62 (2004).

    Google Scholar 

  23. V. M. Shibkov, A. F. Aleksandrov, A. P. Ershov, et al., Vestn. Mosk. Univ., Ser. Fiz. Astronom. 45(5), 67 (2004).

    Google Scholar 

  24. V. M. Shibkov, A. F. Aleksandrov, A. P. Ershov, et al., Plasma Phys. Rep. 31, 795 (2005).

    Article  ADS  Google Scholar 

  25. V. M. Shibkov, A. D. Abramova, V. A. Chernikov, et al., in Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibition, Reno, NV, 2004, Paper AIAA-2004-0513.

  26. V. M. Shibkov, A. F. Alexandrov, A. V. Chernikov, et al., in Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibition, Reno, NV, 2005, Paper AIAA-2005-0779.

  27. L. V. Shibkova, Preprint No. 4 (Phys. Faculty, Moscow State Univ., Moscow, 2007).

  28. L.V. Shibkova, Doctoral (Phys.-Math.) Dissertation (Joint Inst. for High Temperatures, Russ. Acad. Sci., Moscow, 2007).

  29. A. F. Aleksandrov, V. M. Shibkov, and L. V. Shibkova, Vestn. Mosk. Univ., Ser. Fiz. Astronom. 63(5), 68 (2008).

    Google Scholar 

  30. A. F. Aleksandrov, V. M. Shibkov, and L. V. Shibkova, Vestn. Mosk. Univ., Ser. Fiz. Astronom. 63(6), 65 (2008).

    Google Scholar 

  31. V. M. Shibkov, A. F. Aleksandrov, V. A. Chernikov, et al., J. Propulsion Power 25(1), 123 (2009).

    Article  Google Scholar 

  32. V. M. Shibkov, V. G. Gromov, and R. S. Konstantinovskij, in Advanced Combustion and Aerothermal Thechnologies. Environmental Protection and Pollution Reductions, Ed. by N. Syred and A. Khalatov (Springer, Dordrecht, 2007), p. 413.

    Chapter  Google Scholar 

  33. V. M. Shibkov, L. V. Shibkova, and A. A. Karachev, High Temp. 47, 620 (2009).

    Article  Google Scholar 

  34. A. F. Aleksandrov, V. M. Shibkov, and L.V. Shibkova, High Temp. 48, 611 (2010).

    Article  Google Scholar 

  35. V. M. Shibkov, L. V. Shibkova, V. G. Gromov, et al., High Temp. 49, 155 (2011).

    Article  Google Scholar 

  36. V. M. Shibkov and L. V. Shibkova, Tech. Phys. 54, 1467 (2009).

    Article  Google Scholar 

  37. V. M. Shibkov and L. V. Shibkova, Tech. Phys. 55, 58 (2010).

    Article  Google Scholar 

  38. V. M. Shibkov, L. V. Shibkova, A. A. Karachev, and R. S. Konstantinovskii, Teplofiz. Vys. Temp. 48(Suppl. 1), 23 (2010).

    Google Scholar 

  39. I. N. Gusev, A. A. Karachev, P. V. Kopyl, et al., in X International Workshop on Magneto-Plasma Aerodynamics, Moscow, 2011, Book of Abstracts.

  40. A. S. Zarin, A. A. Kuzovnikov, and V. M. Shibkov Freely Localized Microwave Discharge in Air (Neft’ i Gaz, Moscow, 1996) [in Russian].

    Google Scholar 

  41. L. V. Shibkova and V. M. Shibkov, Discharges in Noble Gas Mixtures (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  42. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).

    Google Scholar 

  43. A. P. Ershov, O. S. Surkont, I. B. Timofeev, et al., High Temp. 42, 516 (2004).

    Article  Google Scholar 

  44. A. P. Ershov, A. V. Kalinin, O. S. Surkont, et al., High Temp. 42, 865 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © P.V. Kopyl, O.S. Surkont, V.M. Shibkov, L.V. Shibkova, 2012, published in Fizika Plazmy, 2012, Vol. 38, No. 6, pp. 551–561.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopyl, P.V., Surkont, O.S., Shibkov, V.M. et al. Stabilization of liquid hydrocarbon fuel combustion by using a programmable microwave discharge in a subsonic airflow. Plasma Phys. Rep. 38, 503–512 (2012). https://doi.org/10.1134/S1063780X12050054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X12050054

Keywords

Navigation