Skip to main content
Log in

Vacuum electron acceleration by a tightly focused, radially polarized, relativistically strong laser pulse

  • Laser Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A test particle approach is used to solve the problem of direct electron acceleration by a short, intense, radially polarized laser pulse the focal spot diameter of which can be on the order of the laser wavelength. The fields of a tightly focused laser beam are described in terms of the Stratton-Chu integrals, with which to investigate electron acceleration when the paraxial approximation is inapplicable to laser fields. The dynamics of electron motion in a radially polarized, relativistically strong laser field is analyzed depending on the initial position of an electron in the focal region of the laser beam. The properties of the generated jets of accelerated electrons are investigated depending on the tightness of laser pulse focusing. Possible advantages of using radially polarized laser pulses for charged particle acceleration, as opposed to the use of linearly polarized ones, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. P. Leemans, B. Nagler, A. J. Gonsalves, et al., Nat. Phys. 2, 696 (2006).

    Article  Google Scholar 

  2. S. Kneip, S. R. Nagel, S. F. Martins, et al., Phys. Rev. Lett. 103, 035 002 (2009).

    Google Scholar 

  3. C. E. Clayton, J. E. Ralph, F. Albert, et al., Phys. Rev. Lett. 105, 105 003 (2010).

    Article  Google Scholar 

  4. A. G. Mordovanakis, J. Easter, N. Naumova, et al., Phys. Rev. Lett. 103, 235 001 (2009).

    Article  Google Scholar 

  5. D. Kiefer, A. Henig, D. Jung, et al., Eur. Phys. J. D 55, 427 (2009).

    Article  ADS  Google Scholar 

  6. V. Yanovsky, V. Chuykov, G. Kalinichenko, et al., Opt. Express 16, 2109 (2008).

    Article  ADS  Google Scholar 

  7. http://www.hiper-laser.org

  8. http://www.extreme-light-infrastructure.eu

  9. A.V. Korzhimanov, A.A. Gonoskov, E.A. Khazanov, and A.M. Sergeev, Usp. Fiz. Nauk 181, 9 (2011) [Phys. Usp. 54 (1) (2011)].

    Article  Google Scholar 

  10. A. L. Galkin, M. P. Kalashnikov, V. K. Klinkov, et al., Phys. Plasmas 17, 053105 (2010).

    Article  ADS  Google Scholar 

  11. K. I. Popov, V. Yu. Bychenkov, and W. Rozmus, Phys. Plasmas 15, 013 108 (2008).

    Article  Google Scholar 

  12. Y. I. Salamin, Phys. Rev. A 73, 043402 (2006).

    Article  ADS  Google Scholar 

  13. A. Karmakar and A. Pukhov, Laser Part. Beams 25, 371 (2007).

    Article  Google Scholar 

  14. G. V. Stupakov and M. S. Zolotorev, Phys. Rev. Lett. 86, 5274 (2001).

    Article  ADS  Google Scholar 

  15. A. Henig, D. Kiefer, K. Markey, et al., Phys. Rev. Lett. 103, 045002 (2009).

    Article  ADS  Google Scholar 

  16. F. Dollar, T. Matsuoka, C. McGuffey, et al., AIP Conf. Proc 1299, 710 (2010).

    Article  ADS  Google Scholar 

  17. F. V. Hartemann, S. N. Fochs, G. P. Le Sage, and N. C. Luhmann, Phys. Rev. E 51, 4833 (1998).

    Article  ADS  Google Scholar 

  18. B. Quesnel and M. Mora, Phys. Rev. E 58, 3719 (1998).

    Article  ADS  Google Scholar 

  19. S. G. Bochkarev and V. Yu. Bychenkov, Kvant. Elektron. 37, 273 (2007) [Quant. Electron. 37, 273 (2007)].

    Article  ADS  Google Scholar 

  20. A. L. Galkin, V. V. Korobkin, M. Yu. Romanovskii, and O. B. Shiryaev, Kvant. Elektron. 37, 903 (2007) [Quant. Electron. 37, 903 (2007)].

    Article  ADS  Google Scholar 

  21. P. L. Fortin, M. Piché, and C. J. Varin, J. Phys. B 43, 1 (2010)

    Article  Google Scholar 

  22. A. Di. Piazza, K. Z. Hatsagortsyan, and C. H. Keitel, Phys. Rev. Lett. 102, 254802 (2009).

    Article  ADS  Google Scholar 

  23. A. Maltsev and T. Ditmire, Phys. Rev. Lett. 90, 053002 (2003).

    Article  ADS  Google Scholar 

  24. J. A. Stratton and L. J. Chu, Phys. Rev. 56, 99 (1939).

    Article  ADS  MATH  Google Scholar 

  25. P. Varga and P. Török, J. Opt. Soc. Am. A 17, 11 (2000).

    Google Scholar 

  26. K. I. Popov, PhD Thesis (University of Alberta, Canada, 2009).

  27. V. A. Vshivkov, N. M. Naumova, F. Pegoraro, and S. V. Bulanov, Phys. Plasmas 5, 2727 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.G. Bochkarev, K.I. Popov, V.Yu. Bychenkov, 2011, published in Fizika Plazmy, 2011, Vol. 37, No. 7, pp. 648–660.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bochkarev, S.G., Popov, K.I. & Bychenkov, V.Y. Vacuum electron acceleration by a tightly focused, radially polarized, relativistically strong laser pulse. Plasma Phys. Rep. 37, 603–614 (2011). https://doi.org/10.1134/S1063780X11060043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X11060043

Keywords

Navigation