Skip to main content
Log in

Properties of Spectator Matter in Nuclear Collisions at NICA

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The properties of spectator matter created in 197Au–197Au and 208Pb–208Pb collisions with energies typical for the NICA accelerator complex were studied with the Abrasion–Ablation Monte Carlo for Colliders (AAMCC) model. We review predictions made with AAMCC for several characteristics of spectator matter and compare them with available data. The sum of squares of spectator charges per spectator nucleon is proposed as an additional indicator of collision centrality in BM@N and MPD experiments at NICA. The forward-backward asymmetry of free spectator nucleons is calculated and compared to the asymmetry of the total volume of spectator matter. The sensitivity of calculated yields of spectator neutrons in central 208Pb‒208Pb collisions to the presence of neutron skin in 208Pb is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. Bhattacharyya, “A brief review on nuclear fragmentation,” Int. J. Mod. Phys. E. 19, 319–358 (2010).

    Article  ADS  Google Scholar 

  2. M. B. Golubeva, F. F. Guber, A. P. Ivashkin, A. Y. Isupov, A. B. Kurepin, A. G. Litvinenko, E. I. Litvinenko, I. I. Migulina, and V. F. Peresedov, “Nuclear-nuclear collision centrality determination by the spectators calorimeter for the MPD setup at the NICA facility,” Phys. At. Nucl. 76, 1–15 (2013).

    Article  Google Scholar 

  3. V. Golovatyuk, V. Kekelidze, V. Kolesnikov, O. Rogachevsky, and A. Sorin, “Multi-purpose detector to study heavy-ion collisions at the NICA collider,” Nucl. Phys. A 982, 963–966 (2019).

    Article  ADS  Google Scholar 

  4. J. Aichelin, “’Quantum’ molecular dynamics—a dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions,” Phys. Rep. 202 (5–6), 233–360 (1991).

    Article  ADS  Google Scholar 

  5. J. Aichelin, E. Bratkovskaya, A. Le Fèvre, V. Kireyeu, V. Kolesnikov, Y. Leifels, V. Voronyuk, and G. Coci, “Parton-hadron-quantum-molecular dynamics: A novel microscopic n-body transport approach for heavy-ion collisions, dynamical cluster formation, and hypernuclei production,” Phys. Rev. C 101, 44905 (2020).

    Article  ADS  Google Scholar 

  6. J. J. Gaimard and K. H. Schmidt, “A reexamination of the abrasion-ablation model for the description of the nuclear fragmentation reaction,” Nucl. Phys. A 531, 709–745 (1991).

    Article  ADS  Google Scholar 

  7. C. Scheidenberger, I. A. Pshenichnov, K. Sümmerer, A. Ventura, J. P. Bondorf, A. S. Botvina, I. N. Mishustin, D. Boutin, S. Datz, H. Geissel, Grafström P., H. Knudsen, H. F. Krause, B. Lommel, S. P. Møller, G. Münzenberg, R. H. Schuch, E. Uggerhøj, U. Uggerhøj, C. R. Vane, Z. Z. Vilakazi, and H. Weick, “Charge-changing interactions of ultrarelativistic Pb nuclei,” Phys. Rev. C 70, 014902 (2004).

    Article  ADS  Google Scholar 

  8. A. O. Svetlichnyi and I. A. Pshenichnov, “Formation of free and bound spectator nucleons in hadronic interactions between relativistic nuclei,” Bull. Russ. Acad. Sci.: Phys. 84, 911–916 (2020).

    Article  Google Scholar 

  9. I. A. Pshenichnov, U. A. Dmitrieva, and A. O. Svetlichnyi, “Secondary nuclei from peripheral and ultraperipheral collisions of relativistic heavy ions,” Bull. Russ. Acad. Sci.: Phys. 84, 1007–1011 (2020).

    Article  Google Scholar 

  10. D. Finogeev, M. Golubeva, F. Guber, A. Ivashkin, A. Izvestny, S. Morozov, and O. Petukhov, “The construction and parameters of forward hadron calorimeter (FHCAL) at MPD/NICA,” KnE Energy 3, 149 (2018).

    Article  Google Scholar 

  11. C. Loizides, J. Kamin, and D. D’Enterria, “Improved Monte Carlo Glauber predictions at present and future nuclear colliders,” Phys. Rev. C 97, 054910 (2018).

    Article  ADS  Google Scholar 

  12. J. Bondorf, A. Botvina, A. Iljinov, I. Mishustin, and K. Sneppen, “Statistical multifragmentation of nuclei,” Phys. Rep. 257, 133–221 (1995).

    Article  ADS  Google Scholar 

  13. J. Allison et al. (Geant4 Collab.), “Recent developments in Geant4,” Nucl. Instrum. Methods Phys. Res., Sect. A 835, 186–225 (2016).

    Google Scholar 

  14. T. Ericson, “The statistical model and nuclear level densities,” Adv. Phys. 9, 425–511 (1960).

    Article  ADS  Google Scholar 

  15. A. Botvina et al. (ALADIN Collab.), “Multifragmentation of spectators in relativistic heavy-ion reactions,” Nucl. Phys. A 584, 737–756 (1995).

    Article  ADS  Google Scholar 

  16. X. Campi, H. Krivine, and E. Plagnol, “Size and excitation energy distributions of projectile spectators in multifragmentation data,” Phys. Rev. C 50, R2680–R2683 (1994).

    Article  ADS  Google Scholar 

  17. R. Ogul et al. (ALADIN Collab.), “Isospin-dependent multifragmentation of relativistic projectiles,” Phys. Rev. C 83, 024608 (2011).

    Article  ADS  Google Scholar 

  18. M. I. Adamovich et al. (EMU-01/12 Collab.), “Multifragmentation of gold nuclei in the interactions with photoemulsion nuclei at 10.7 GeV/nucleon,” Z. Phys. A 359, 277–290 (1997).

    Article  ADS  Google Scholar 

  19. W. Trautmann, J. C. Adloff, M. Begemann-Blaich, P. Bouissou, J. Hubele, G. Imme, I. Iori, P. Kreutz, G. J. Kunde, S. Leray, V. Lindenstruth, Z. Liu, U. Lynen, R. J. Meijer, U. Milkau, A. Moroni, W. F. Müller, C. Ngo, C. A. Ogilvie, J. Pochodzalla, G. Raciti, G. Rudolf, H. Sann, A. Schüttauf, W. Seidel, L. Stuttge, and A. Tucholski, “The rise and fall of multifragment production in 197Au + C, Al, and Cu reactions at E/A = 600 MeV,” Nucl. Phys. A 538 (C), 473–481 (1992).

    Article  ADS  Google Scholar 

  20. L. P. Csernai, G. Eyyubova, and V. K. Magas, “New method for measuring longitudinal fluctuations and directed flow in ultrarelativistic heavy ion reactions,” Phys. Rev. C 86, 024912 (2012).

    Article  ADS  Google Scholar 

  21. R. Raniwala, S. Raniwala, and C. Loizides, “Effects of longitudinal asymmetry in heavy-ion collisions,” Phys. Rev. C 97, 024 912 (2018).

    Article  Google Scholar 

  22. C. J. Horowitz, and J. Piekarewicz, “Neutron star structure and the neutron radius of 208Pb,” Phys. Rev. Lett. 86, 5647–5650 (2001).

    Article  ADS  Google Scholar 

  23. A. Trzcińska, J. Jastrzébski, P. Lubiński, F. J. Hartmann, R. Schmidt, T. von Egidy, and B. Kłos, “Neutron density distributions deduced from antiprotonic atoms,” Phys. Rev. Lett. 87, 082501 (2001).

    Article  ADS  Google Scholar 

  24. C. M. Tarbert et al. (Crystal Ball at MAMI and A2 Collab.), “Neutron skin of Pb-208 from coherent pion photoproduction,” Phys. Rev. Lett. 112, 242502 (2014).

    Article  ADS  Google Scholar 

  25. C. W. Ma, Y. Fu, D. Q. Fang, Y. G. Ma, X. Z. Cai, W. D. Tian, K. Wang, and C. Zhong, “Isospin effect and isoscaling phenomenon in projectile fragmentation,” Int. J. Mod. Phys. E 17, 1669–1680 (2008).

    Article  ADS  Google Scholar 

  26. D. Q. Fang, Y. G. Ma, X. Z. Cai, W. D. Tian, and H. W. Wang, “Neutron removal cross section as a measure of neutron skin,” Phys. Rev. C 81, 047603 (2010).

    Article  ADS  Google Scholar 

  27. T. Aumann, C. A. Bertulani, F. Schindler, and S. Typel, “Peeling off neutron skins from neutron-rich nuclei: Constraints on the symmetry energy from neutron-removal cross sections,” Phys. Rev. Lett. 119, 262501 (2017).

    Article  ADS  Google Scholar 

  28. C. A. Bertulani and J. Valencia, “Neutron skins as laboratory constraints on properties of neutron stars and on what we can learn from heavy ion fragmentation reactions,” Phys. Rev. C 100, 015802 (2019).

    Article  ADS  Google Scholar 

  29. A. B. Jones and B. A. Brown, “Two-parameter Fermi function fits to experimental charge and point-proton densities for Pb-208,” Phys. Rev. C 90, 067304 (2014).

    Article  ADS  Google Scholar 

  30. G. A. Miller, “Coherent-nuclear pion photoproduction and neutron radii,” Phys. Rev. C 100, 44608 (2019).

    Article  ADS  Google Scholar 

  31. H. Appelshäuser et al. (NA49 Collab.), “Spectator nucleons in Pb+Pb collisions at 158 A⋅GeV,” Eur. Phys. J. A 2, 383–390 (1998).

    Article  ADS  Google Scholar 

  32. S. Acharya et al. (ALICE Collab.), Data-Driven Model for the Emission of Spectator Nucleons as a Function of Centrality in Pb-Pb Collisions at LHC Energies. ALICE-PUBLIC-2020-001 (2020), pp. 1–19. http:// cds.cern.ch/record/2712412.

  33. D. A. Bauer, D. V. Karlovets, and V. G. Serbo, “Bound-free pair production in relativistic nuclear collisions from the NICA to the HE LHC colliders,” Eur. Phys. J. A 56, 4–8 (2020).

    Article  Google Scholar 

  34. B. Kłos, A. Trzcińska, J. Jastrzébski, T. Czosnyka, M. Kisieliński, P. Lubiński, P. Napiorkowski, L. Pieńkowski, F. J. Hartmann, B. Ketzer, P. Ring, R. Schmidt, von T. Egidy, R. Smolańczuk, S. Wycech, K. Gulda, W. Kurcewicz, E. Widmann, and B. A. Brown, “Neutron density distributions from antiprotonic Pb-208 and Bi-209 atoms,” Phys. Rev. C 76, 014311 (2007).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

One of the authors (I.P.) is grateful to Dariusz Miskowiec and Chiara Oppedisano for the discussions that stimulated the investigation of the effects of neutron skin.

Funding

The study was carried out with the financial support of the Russian Foundation for Basic Research within the framework of the scientific project no. 18-02-40035-mega.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Pshenichnov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pshenichnov, I.A., Kozyrev, N.A., Nepeivoda, R.S. et al. Properties of Spectator Matter in Nuclear Collisions at NICA. Phys. Part. Nuclei 52, 591–597 (2021). https://doi.org/10.1134/S1063779621040493

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779621040493

Navigation