Skip to main content
Log in

Packages for Data Storage and Femtoscopic Analysis

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Various physics analyses in high-energy heavy-ion collisions demand to acquire and process low-level information from different detector subsystems, perform track reconstruction and keep results in some data format. We present a structure of compact data format for the MPD experiment at the NICA collider. In addition, results of software developments for femtoscopic analysis that allows one to extract spatial and temporal properties of the particle-emitting source created in relativistic heavy-ion collisions are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. E. Shuryak, Phys. Rep. 61, 71 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  2. L. McLerran, Rev. Mod. Phys. 58, 1021 (1988).

    Article  ADS  Google Scholar 

  3. J. Adams et al. (STAR Collab.), Nucl. Phys. A 757, 102 (2005);

    Article  ADS  Google Scholar 

  4. K. Adcox et al. (PHENIX Collab.), Nucl. Phys. A 757, 184 (2005);

    Article  ADS  Google Scholar 

  5. B. B. Back et al. (PHOBOS Collab.), Nucl. Phys. A 757, 28 (2005);

    Article  ADS  Google Scholar 

  6. I. Arsene et al. (BRAHMS Collab.), Nucl. Phys. A 757, 1 (2005).

    Article  ADS  Google Scholar 

  7. Y. Aoki, G. Endrodi, Z. Fodor, S. Katz, and K. Szabo, Nature 443, 675 (2006);

    Article  ADS  Google Scholar 

  8. S. Borsanyi et al. (Wuppertal-Budapest Collab.), JHEP, No. 09, 073 (2010).

  9. M. A. Halasz, A. D. Jackson, R. E. Shrock, M. A. Stephanov, and J. J. M. Verbaarschot, Phys. Rev. D 58, 096007 (1998);

    Article  ADS  Google Scholar 

  10. N. G. Antoniou and A. S. Kapoyannis, Phys. Lett. B 563, 165 (2003).

    Article  ADS  Google Scholar 

  11. J. Randrup, Phys. Rev. C 82, 034902 (2010).

    Article  ADS  Google Scholar 

  12. Kh. U. Abraamyan et al. (MPD Collab.), Nucl. Instrum. Methods Phys. Res., Sect. A 628, 99 (2011).

    Google Scholar 

  13. R. Brun and F. Rademakers, Nucl. Instrum. Methods Phys. Res., Sect. A 389, 81 (1997).

    Google Scholar 

  14. G. Petrucciani et al. (CMS Collab.), J. Phys.: Conf. Ser. 664, 072052 (2015).

    Google Scholar 

  15. G. I. Kopylov and M. I. Podgoretsky, Sov. J. Nucl. Phys. 15, 219 (1972);

    Google Scholar 

  16. G. I. Kopylov, Phys. Lett. B 50, 472 (1974);

    Article  ADS  Google Scholar 

  17. M. I. Podgoretsky, Sov. J. Part. Nucl. 20, 266 (1989).

    Google Scholar 

  18. R. Lednicky and V. L. Lyuboshitz, Sov. J. Nucl. Phys. 35, 770 (1982).

    Google Scholar 

  19. R. Lednicky et al., Phys. Lett. B 373, 30 (1996).

    Article  ADS  Google Scholar 

  20. D. H. Rischke and M. Gyulassy, Nucl. Phys. A 608, 479 (1996).

    Article  ADS  Google Scholar 

  21. M. A. Lisa, S. Pratt, R. Soltz, and U. Wiedemann, Annu. Rev. Nucl. Part. Sci. 55, 357 (2005).

    Article  ADS  Google Scholar 

  22. G. Bertsch, M. Gong, and M. Tohyama, Phys. Rev. C 37, 1896 (1988);

    Article  ADS  Google Scholar 

  23. S. Pratt, Phys. Rev. D: Part. Fields 33, 1314 (1986).

    Article  ADS  Google Scholar 

  24. S. Bass et al., Prog. Part. Nucl. Phys. 41, 225 (1998).

    Article  ADS  Google Scholar 

  25. M. Bleicher et al., J. Phys. G.: Nucl. Part. Phys. 25, 1859 (1999).

    Article  ADS  Google Scholar 

  26. P. Batyuk et al., Phys. Part. Nucl. 51, 252 (2020).

    Article  Google Scholar 

  27. V. K. Semenova, E. V. Khyzhniak, and G. A. Nigmatkulov, J. Phys.: Conf. Ser. 1390, 012028 (2019).

    Google Scholar 

  28. G. Nigmatkulov, Phys. Part. Nucl. 51, 248 (2020).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Computations were performed using resources of NRNU MEPhI high-performance computing center and on the basis of the HybriLIT heterogeneous computing platform (LIT, JINR).

Funding

The reported study was funded by RFBR according to the research project no. 18-02-40044, supported by the National Research Nuclear University MEPhI in the framework of the Russian Academic Excellence Project (contract no. 02.a03.21.0005, 27.08.2013) and by the Ministry of Science and Higher Education of the Russian Federation, Project “Fundamental properties of elementary particles and cosmology” no. 0723-2020-0041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Nigmatkulov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nigmatkulov, G., Batyuk, P. Packages for Data Storage and Femtoscopic Analysis. Phys. Part. Nuclei 52, 648–651 (2021). https://doi.org/10.1134/S1063779621040468

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779621040468

Navigation