Skip to main content
Log in

Description of mixed-mode dynamics within the symplectic extension of the Interacting Vector Boson Model

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

In the algebraic Interacting Vector Boson Model (IVBM) it is assumed that the nuclear dynamics can be described by means of two types of vector “quasiparticles,” which are also characterized by another quantum number—a “T-spin” (an analogue to the F-spin). The non-compact symplectic group Sp(12, R) appears as the group of dynamical symmetry for the problem of two interacting vector bosons. The symplectic structure allows the change in the number of phonons, needed to build the collective states, that results in larger model spaces, which can accommodate the more complex structural effects as observed in the contemporary experiment. The applications of the IVBM are extended by exploiting three new subgroup chains in the reduction of Sp(12, R) to the physical angular momentum subgroup SO(3). The corresponding exactly solvable limiting cases are applied to achieve a description of complex nuclear collective spectra of even-even nuclei in the rare earth and actinide regions up to states of very high angular momentum. The first reduction that we exploit is one that extends the rotational limit of the number preserving version of the model; namely, Sp(12, R) ⊃ U(6) ⊃ U(2) ⊗ SU(3). Another limit of the symplectic IVBM, Sp(12, R) ⊃ Sp(2, R) ⊗ SO(6), contains in a natural way the 6-dimensional Davidson potential. In both of these cases, because collective modes can be mixed, we obtain successful descriptions of both positive and negative parity band configurations. The structure of band-head configurations, whose importance is established in the first two limits, is also examined in a third reduction, Sp(12, R) ⊃ Sp(4, R) ⊗ SO(3). The distributions of energies that are obtained in this limit with respect to the number of bosons that build each of the states with fixed angular momentum, enables one to distinguish typical collective vibrational and rotational spectra. This algebraic chain also provides important links between the subgroups of the other limits. The symplectic extension of the IVBM permits a richer classification of the states than its unitary version and is shown to be appropriate for a description of rather diverse nuclear spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mitsuo Sakai, Atom. Data Nucl. Data Tabl. 31, 399 (1984); Level Retrieval Parameters, http://iaeand.iaea.or.at/nudat/levform.html; Evaluated Nuclear Structure Data File (ENSDF), http://i.e.lbl.gov/databases,endsdfserve.html.

    Article  ADS  Google Scholar 

  2. F. Iachello and A. Arima, The Interacting Boson Model (Cambridge Univ., Cambridge, 1978).

    Google Scholar 

  3. R. F. Casten, Nucl. Phys. A 443, 1 (1985).

    Article  ADS  Google Scholar 

  4. F. Iachello, Phys. Rev. Lett. 85, 3580 (2000); F. Iachello, Phys. Rev. Lett 87, 052502 (2001); J. Jolie et al., Phys. Rev. Lett 89, 182 502 (2002); F. Iachello, Phys. Rev. Lett. 91, 132 502 (2003).

    Article  ADS  Google Scholar 

  5. A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin, New York, 1975).

    Google Scholar 

  6. T. Dytrych, K. D. Sviratcheva, C. Bahri, et al., Phys. Rev. Lett. 98, 162 503 (2007).

    Google Scholar 

  7. J. M. Eisenberg and W. Greiner, Nuclear Theory (North-Holland, Amsterdam, 1970), Vol. 1.

    Google Scholar 

  8. R. F. Dashenand and M. Gell-Mann, Phys. Lett 17, 142 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  9. J. P. Elliott, Proc. R. Soc. London, Ser. A 245, 128 (1988); Proc. R. Soc. London Ser. A 245, 562 (1958).

    ADS  Google Scholar 

  10. O. Castaños, J. P. Draayer, and Y. Leschber, Z. Phys. A 329, 33 (1988).

    Google Scholar 

  11. P. Raychev, Sov. J. Nucl. Phys. 16, 1171 (1970).

    Google Scholar 

  12. P. Raychev and R. Roussev, Sov. J. Nucl. Phys. 27, 1501 (1978).

    Google Scholar 

  13. D. Karadjov, J. Piperova, P. Raychev, and R. Roussev, JINR Commun. P4-11670 (1978); D. Karadjov, P. Raychev, and R. Roussev, JINR Commun. P4-11671 (1978).

  14. A. Georgieva, P. Raychev, and R. Roussev, J. Phys. G 8, 1377 (1982).

    Article  ADS  Google Scholar 

  15. A. Georgieva, P. Raychev, and R. Roussev, J. Phys. G 9, 521 (1983).

    Article  ADS  Google Scholar 

  16. A. Arima and F. Iachello, Phys. Rev. Lett. 35, 1069 (1975).

    Article  ADS  Google Scholar 

  17. A. Arima and F. Iachello, Ann. Phys. 99, 253 (1976).

    Article  ADS  Google Scholar 

  18. A. Arima and F. Iachello, Ann. Phys. 111, 201 (1978).

    Article  ADS  Google Scholar 

  19. O. Castanos, E. Chacon, A. Frank, and M. Moshinsky, J. Math. Phys. 20, 35 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  20. V. Vanagas, E. Nadjakov, and P. Raychev, Preprint IC/75/40 (ICTP, Trieste, 1975).

  21. D. Janssen, R. V. Jolos, and F. Donau, Nucl. Phys. A 224, 93–115 (1974).

    Article  ADS  Google Scholar 

  22. R. V. Jolos and D. Janssen, Fiz. Elem. Chastits At. Yadra 8, 330 (1977).

    Google Scholar 

  23. D. Janssen, F. Donau, S. Frauendorf, and R. V. Jolos, Nucl. Phys. A 172, 145 (1971).

    Article  ADS  Google Scholar 

  24. M. Moshinsky, Group Theory and the Many Body Problem (Gordon and Breach, New York, 1968); M. Moshinsky, J. Math. Phys. 25, 1555 (1984).

    Google Scholar 

  25. D. J. Rowe, Prog. Part. Nucl. Phys. 37, 4711 (1995).

    MathSciNet  Google Scholar 

  26. V. V. Vanagas, Algebraic Foundations of Microscopic Nuclear Theory (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  27. G. Rosensteel and D. J. Rowe, Phys. Rev. Lett. 38, 10 (1977).

    Article  ADS  Google Scholar 

  28. G. Rosensteel and D. J. Rowe, Ann. Phys. 126, 343 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  29. W. Greiner and J. Maruhn, Nuclear Models (Springer, Berlin, Heidelberg, 1995).

    MATH  Google Scholar 

  30. T. Dytrych, K. D. Sviratcheva, C. Bahri, et al., Phys. Rev. C 76, 014315 (2007); J. Phys. G 35, 095101 (2008).

  31. P. Navratil, J. P. Vary, and B. R. Barrett, Phys. Lett. 84, 5728 (2000); Phys. Rev. C 62, 054311 (2000).

    Article  Google Scholar 

  32. A. Arima, M. Harvey, and K. Shimizu, Phys. Lett. B 30, 517 (1969); K. T. Hecht and A. Adler, Nucl. Phys. A 137, 129 (1969); J. P. Draayer, “Pseudospin in Perspective,” in Group Theory in Physics (Cocoyoc, Morelos, Mexico, 1991).

    Article  ADS  Google Scholar 

  33. H. Lipkin, Nucl. Phys. A 350, 16 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  34. V. Bargmann and M. Moshinsky, Nucl. Phys. 23, 177 (1961).

    Article  MATH  MathSciNet  Google Scholar 

  35. G. Rosensteel and D. J. Rowe, Int. J. Theor. Phys. 16, 63 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  36. P. Raychev, Comp. Ran. Bulg. Acad. Sci. 25, 1503 (1972).

    Google Scholar 

  37. R. M. Asherova, V. A. Knir, Yu. F. Smirnov, and V. N. Tolstoy, Sov. J. Nucl. Phys. 21, 1126 (1975).

    Google Scholar 

  38. H. Ganev, V. Garistov, and A. Georgieva, Phys. Rev. C 69, 014305 (2004).

    Google Scholar 

  39. R. M. Asherova, D. V. Fursa, A. Georgieva, and Y. F. Smirnov, J. Phys. G 19, 1887–1901 (1993); Izv. Akad. Nauk, Ser. Phys. 56, 129–136 (1992).

    Article  ADS  Google Scholar 

  40. G. Kyrchev and V. Paar, Ann. Phys. 170, 257 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  41. R. V. Jolos, G. Kyrchev, and V. Paar, Fiz. Elem. Chastits At. Yadra 18, 1173 (1987).

    Google Scholar 

  42. H. G. Ganev, A. I. Georgieva, and J. P. Draayer, Phys. Rev. C 72, 014314 (2005).

    Google Scholar 

  43. H. Ganev, V. P. Garistov, A. I. Georgieva, and J. P. Draayer, Phys. Rev. C 70, 010411 (2004).

    Google Scholar 

  44. D. P. Menezes, D. M. Brink, and D. Bonatsos, Nucl. Phys. A 494, 186 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  45. M. Moshinsky and C. Quesne, J. Math. Phys. 12, 1791 (1971).

    Article  Google Scholar 

  46. D. A. Varshalovich, A. N. Moskalev, and V. K. Hersonsky, Quantum Theory of the Angular Momentum (Nauka, Leningrad, 1975) [in Russian].

    Google Scholar 

  47. A. Arima, T. Otsuka, F. Iachello, and I. Talmi, Phys. Lett. B 66, 205 (1977); J. P. Elliott and J. A. Evans, Phys. Lett. B 101, 216 (1981); J. P. Elliott and A. P. White, Phys. Lett. B 97, 169 (1980).

    Article  ADS  Google Scholar 

  48. F. Iachello and I. Talmi, Rev. Mod. Phys. 59, 339 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  49. D. J. Rowe, G. Rosensteel, and R. Carr, J. Phys. A 17, L399 (1984); J. Deenen and C. Quesne, J. Math. Phys. 23, 878 (1982); O. Castaños, E. Chacón, M. Moshinsky, and C. Quesne, J. Math. Phys. 26, 2107 (1985).

    Article  MathSciNet  Google Scholar 

  50. D. J. Rowe, J. Math. Phys. 27, 2662 (1984); K. T. Hecht, Lecture Notes in Physics (Springer, Berlin, 1987), Vol. 290.

    Article  ADS  MathSciNet  Google Scholar 

  51. A. M. Perelomov, Generalized Coherent States and Their Applications (Springer, Berlin, 1986).

    MATH  Google Scholar 

  52. F. J. Dayson, Phys. Rev. 12, 1217 (1956).

    Article  ADS  Google Scholar 

  53. T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).

    Article  MATH  ADS  Google Scholar 

  54. D. Bonatsos and A. Klein, Phys. Rev. C 31, 992 (1985); D. Bonatsos, A. Klein, and Q. Y. Zhang, Phys. Lett. B 175, 249 (1986); D. P. Menezes and D. Bonatsos, Nucl. Phys. A 499, 29 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  55. J. Dobaczewski, Nucl. Phys. A 369, 213 (1981); Nucl. Phys. A 369, 237 (1981); Nucl. Phys. A 380, 1 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  56. Y. F. Smirnov, V. N. Tolstoy, A. A. Saharuk, M. Havlihceh, and C. Burdic, Group Theory Methods in Physics, Ed. by M. A. Markov (Nauka, Moscow, 1983), Vol. 2, p. 517.

    Google Scholar 

  57. Y. F. Smirnov and V. N. Tolstoy, Symmetries and Nuclear Structure, Ed. by R. A. Meyer and V. Paar (Harwood, New York, 1987), p. 24.

    Google Scholar 

  58. P. Park, Phys. Rev. C 35, 805 (1987).

    Article  ADS  Google Scholar 

  59. J. Dobes, S. P. Ivanova, R. V. Jolos, and R. Pedrosa, Phys. Rev. C 41, 1840 (1990).

    Article  ADS  Google Scholar 

  60. A. I. Georgieva, M. I. Ivanov, P. P. Raychev, and R. R. Roussev, Int. J. Theor. Phys. 25, 1181 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  61. V. V. Vanagas, Algebraic Foundations of Microscopic Nuclear Theory (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  62. A. M. Perelomov and V. S. Popov, Sov. J. Nucl. Phys. 5, 489 (1967).

    Google Scholar 

  63. H. B. Geyer, C. A. Engelbrecht, and F. J. W. Hahne, Phys. Rev. C 33, 1041 (1986).

    Article  ADS  Google Scholar 

  64. E. Marshalek and A. Klein, Z. Phys. A 329, 44 (1989).

    MathSciNet  Google Scholar 

  65. Wu Cheng-Li et al., Phys. Rev. C 36, 1157 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  66. P. Halse and Z. Y. Pan, Phys. Rev. C 36, 1212 (1987).

    Article  ADS  Google Scholar 

  67. P. Halse, J. P. Elliott, and J. A. Evans, Nucl. Phys. A 417, 301 (1984).

    Article  ADS  Google Scholar 

  68. P. A. Butler and W. Nazarewicz, Rev. Mod. Phys. 68, 349 (1996).

    Article  ADS  Google Scholar 

  69. R. V. Jolos, P. von Brentano, and F. Donau, J. Phys. G 19, L151 (1993); T. M. Shneidman, G. G. Adamian, N. V. Antonenko, et al., Phys. Lett. B 526, 322 (2002); T. M. Shneidman, G. G. Adamian, N. V. Antonenko, and R. V. Jolos, Phys. Rev. C 74, 034316 (2006).

    Article  ADS  Google Scholar 

  70. J. Engel and F. Iachello, Phys. Rev. Lett 54, 1126 (1985); J. Engel and F. Iachello, Nucl. Phys. A 472, 61 (1987); V. Zamfir and D. Kusnezov, Phys. Rev. C 63, 0540 (2001).

    Article  ADS  Google Scholar 

  71. Alonso et al., Nucl. Phys. A 586, 100 (1995).

    Article  ADS  Google Scholar 

  72. A. A. Raduta and D. Ionescu, Phys. Rev. C 67, 044312 (2003).

    Google Scholar 

  73. A. A. Raduta, D. Ionescu, I. I. Ursu, and Amand Faessler, Nucl. Phys. A 720, 43 (2003).

    Article  ADS  Google Scholar 

  74. A. Georgieva, P. Raychev, and R. Roussev, Bulg. J. Phys. 12, 147 (1985).

    Google Scholar 

  75. H. Ganev, V. Garistov, and A. Georgieva, in Proc. of the XXII Intern. Workshop on Nuclear Theory (Rila Mountains, Bulgaria, 2003).

    Google Scholar 

  76. D. Bonatsos, C. Daskaloyannis, S. Drenska, et al., Phys. Rev. C 62, 024301 (2000).

    Google Scholar 

  77. P. E. Garrett, J. Phys. G 27, R1–R22 (2001).

    Article  ADS  Google Scholar 

  78. U. Kneissl et al., Phys. Rev. Lett. 71, 2180 (1993).

    Article  ADS  Google Scholar 

  79. J. P. Draayer, “Algebraic Approaches to Nuclear Structure: Interacting Boson and Fermion Models,” in Contemporary Concepts in Physics VI, Ed. by Casten R. F. Chur (Harwood Academic, Switzerland, 1993), p. 423.

    Google Scholar 

  80. G. Popa, A. Georgieva, and J. P. Draayer, Phys. Rev. C 69, 064307 (2004).

    Google Scholar 

  81. Y. Leshber and J. P. Draayer, Phys. Lett. B 190, 1 (1987); O. Castaños, J. P. Draayer, and Y. Leshber, Z. Phys. A 329, 33 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  82. R. F. Casten and N. V. Zamfir, Phys. Rev. Lett. 85, 3584 (2000); M. A. Caprio, “Experiments on Critical Point Nuclei-Mapping the Triangle,” AIP Conf. Proc. 638, 17 (2002).

    Article  ADS  Google Scholar 

  83. A. A. Solnishkin, V. P. Garistov, A. Georgieva, H. Ganev, and V. V. Burov, Phys. Rev. C 72, 0643321 (2005).

    Google Scholar 

  84. J. Adam et al., BRAS Phys. 66, 1384 (2002); A. Jungclaus et al., Phys. Rev. C 66, 014312 (2002).

    Google Scholar 

  85. H. G. Ganev and A. I. Georgieva, Phys. Rev. C 76, 054322 (2007).

    Google Scholar 

  86. S. Alisauskas, A. Georgieva, P. Raychev, and R. Roussev, Bulg. J. Phys. 11, 150 (1984).

    MathSciNet  Google Scholar 

  87. G. Racah, Phys. Rev. 76, 1352 (1949).

    Article  MATH  ADS  Google Scholar 

  88. N. Matagne and F. Stancu, Phys. Rev. D 73, 114 025 (2006).

  89. J. P. Draayer and Y. Akiyama, J. Math. Phys. 14, 1904 (1973).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  90. D. Vergados, Nucl. Phys. A 111, 681 (1968).

    ADS  Google Scholar 

  91. B. G. Wybourne, Classical Groups for Physicists (Wiley, New York, 1974); C. Quesne, J. Phys. A 03, 847 (1990); J. Phys. A 04, 0697 (1991).

    MATH  Google Scholar 

  92. K. T. Hecht, R. Le Blanc, and D. J. Rowe, J. Phys. A 20, 2241 (1987).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  93. R. Le Blanc and D. J. Rowe, J. Phys. A 20, L681 (1987).

    Article  Google Scholar 

  94. D. J. Rowe, R. Le Blanc, and J. Repka, J. Phys. A 22, L309 (1989).

    Article  ADS  Google Scholar 

  95. H. Ower et al., Nucl. Phys. A 388, 421 (1982); S. Kuyucak and S. C. Li, Phys. Lett. B 354, 189 (1995).

    Article  ADS  Google Scholar 

  96. M. R. Schmorak, Nucl. Data Sheets 63, 183 (1991).

    Article  Google Scholar 

  97. P. M. Davidson, Proc. Roy. Soc. A 135, 459 (1932).

    Article  MATH  ADS  Google Scholar 

  98. D. J. Rowe, J. Math. Phys. 35, 3178 (1994); D. J. Rowe and C. Bahri, J. Phys. A 31, 4947 (1998).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  99. M. Moshinsky and C. Quesne, J. Math. Phys. 11, 1631 (1970); J. Math. Phys. 12, 1772 (1971).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  100. M. Moshinsky, J. Math. Phys. 25, 1555 (1984).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  101. Feng Pan and J. P. Draayer, Nucl. Phys. A 636, 156 (1998).

    Article  ADS  Google Scholar 

  102. E. Chacon, O. Castaños, and A. Frank, J. Math. Phys. 25, 1442 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  103. A. J. Dragt, J. Math. Phys. 6, 533 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  104. J. P. Elliott, J. A. Evans, and P. Park, Phys. Lett. B 169, 309 (1986); J. P. Elliott, P. Park, and J. A. Evans, Phys. Lett. B 171, 145 (1986).

    Article  ADS  Google Scholar 

  105. H. G. Ganev, A. I. Georgieva, and J. P. Draayer, “Transitional Nuclear Spectra within the Framework of Interacting Vector Boson Model with 6-Dimensional Davidson Potential,” in Proc. of the XXIV Intern. Workshop on Nuclear Theory, Ed. by S. Dimitrova (Heron Press Sci. Ser., Sofia, 2005), p. 169.

    Google Scholar 

  106. D. Tonev et al., Phys. Rev. C 69, 034334 (2004).

  107. R. M. Clark et al., Phys. Rev. C 69, 064322 (2004); A. I. Georgieva, Tz. Venkova, and A. Aprahamian, “Systematics of Nuclei with Critical Point Symmetries in the Rare Earth Region,” in Proc. of the XXIII Intern. Workshop on Nuclear Theory, Ed. by S. Dimitrova (Heron Press Sci. Ser., Sofia, 2004), pp. 283–294.

  108. V. Garistov, “Rearrangement of the Experimental Data of Low Lying Collective Excited States,” in Proc. of the XXII Intern. Workshop on Nuclear Theory, Ed. by V. Nikolaev (Heron Press Sci. Ser., Sofia, 2003), p. 305.

    Google Scholar 

  109. V. Garistov, “On Description of the Yrast Lines in IBM-1,” in Proc. of the XXI Intern. Workshop on Nuclear Theory, and Ed. by V. Nikolaev (Heron Press Sci. Ser., Sofia, 2002).

    Google Scholar 

  110. D. J. Rowe, Phys. Rev. Lett. 93, 122 502 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgieva, A.I., Ganev, H.G., Draayer, J.P. et al. Description of mixed-mode dynamics within the symplectic extension of the Interacting Vector Boson Model. Phys. Part. Nuclei 40, 461–501 (2009). https://doi.org/10.1134/S1063779609040029

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779609040029

PACS numbers

Navigation