Skip to main content
Log in

Pyroelectric Technologies, Their Applications, and Prospects for Development

  • ENGINEERING DESIGN OF EQUIPMENT FOR NUCLEAR PHYSICS
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Description of modern pyroelectric technologies is presented in this article. Various schemes for generating X-ray radiation are presented. The possibility of controlling charged particle beams by means of a pyroelectric deflector is demonstrated. The prospects for the development of pyroelectric technologies and their application are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. J. D. Brownridge, Nature (London, U.K.) 358, 287 (1992).

    Article  Google Scholar 

  2. J. D. Brownridge and S. Raboy, J. Appl. Phys. 86, 640 (1999).

    Article  ADS  Google Scholar 

  3. J. D. Brownridge and S. M. Shafroth, Appl. Phys. Lett. 79, 3364 (2001).

    Article  ADS  Google Scholar 

  4. J. D. Brownridge and S. M. Shafroth, Appl. Phys. Lett. 85, 1298 (2004).

    Article  ADS  Google Scholar 

  5. S. M. Shafroth, W. Kruger, and J. D. Brownridge, Nucl. Instrum. Methods Phys. Res., Sect. A 422, 1 (1999).

    Google Scholar 

  6. http://www.amptek.com/internal-products/obsolete-products/cool-x-pyroelectric-x-ray-generator.

  7. O. O. Ivashchuk, A. V. Shchagin, A. S. Kubankin, V.   Y.   Ionidi, A. S. Chepurnov, V. S. Miroshnik, V. I. Volkov, and D. A. Lepeshko, J. Instrum. 15, C02002 (2020).

    Article  Google Scholar 

  8. O. O. Ivashchuk, A. V. Shchagin, A. S. Kubankin, V. Y. Ionidi, and A. S. Chepurnov, Vopr. At. Nauki Tekh., Ser.: Yad. Issled. 6, 81 (2019).

    Google Scholar 

  9. O. O. Ivashchuk, in Proceedings of the 14th Cherenkov’s Readings, 2021.

  10. J. A. Geuther and Y. Danon, J. Appl. Phys. 97, 104916 (2005).

    Article  ADS  Google Scholar 

  11. A. S. Kubankin, A. N. Oleinik, and A. V. Shchagin, RF Patent No. RU156716U1 (2015).

  12. A. N. Oleinik, A. S. Kubankin, R. M. Nazhmudinov, K. A. Vokhmyanina, A. V. Shchagina, and P. V. Karataevd, J. Instrum. 11, 08007 (2016).

    Article  Google Scholar 

  13. V. I. Alexeyev, V. A. Astapenko, A. N. Eliseyev, E. F. Irribarra, V. A. Karpov, I. A. Kishchin, Yu. A. Krotov, A. S. Kubankin, R. M. Nazhmudinov, M. Al-Omari, and S. V. Sakhno, J. Surf. Invest.: X-Ray, Synchrotr. Neutron Tech. 7, 13 (2017).

    Google Scholar 

  14. O. O. Ivashchuk, A. V. Shchagin, A. S. Kubankin, I. A. Kishin, V. I. Alekseev, A. N. Oleinik, and A. N. Eleseev, Channeling 2018, 212 (2018).

    Google Scholar 

  15. J. K. Lim, P. Frigola, G. Travish, and J. B. Rosenzweig, Phys. Rev. Accel. Beams 8, 072401 (2005).

    Article  ADS  Google Scholar 

  16. T. Oku, J. Suzuki, H. Sasao, S. Yamada, M. Furusaka, T. Adachi, T. Shinohara, K. Ikeda, and H. M. Shimizu, Phys. B (Amsterdam, Neth.) 356, 126 (2005).

  17. T. Oku, H. Kira, T. Shinohara, S. Takata, M. Arai, J. Suzuki, and H. M. Shimizu, J. Phys.: Conf. Ser. 251, 012078 (2010).

    Google Scholar 

  18. A. N. Oleinik, A. S. Kubankin, A. V. Shchagin, and A. A. Kaplii, RF Patent No. RU175484U1 (2017).

  19. A. A. Kaplii, A. N. Oleinik, A. S. Kubankin, and A. V. Shchagin, RF Patent No. RU168703U1 (2016).

  20. A. E. Bondar et al., Vestn. NGU, Ser.: Fiz., No. 8, 27 (2013).

  21. J. A. Geuther, Y. Danon, and F. Saglime, Phys. Rev. Lett. 96, 054803 (2006).

    Article  ADS  Google Scholar 

  22. A. S. Chepurnov, V. Y. Ionidi, M. B. Gromov, M.  A.  Kirsanov, A. S. Klyuyev, A. S. Kubankin, A. N. Oleinik, A. V. Shchagin, and K. A. Vokhmyanina, J. Phys.: Conf. Ser. 798, 012119 (2017).

    Google Scholar 

Download references

Funding

The work was financially supported by a Program of the  Ministry of Education and Science of the Russian Federation for higher education establishments, project no. FZWG-2020-0032 (2019-1569). This work was partially carried out within the State Program of FSRC “Crystallography and Photonics” RAS (in a part of electron microscopy/ICP-MS), using the equipment of Shared Research Centers of FSRC “Crystallography and Photonics” RAS supported by the Ministry of Science and Higher Education of Russia (project RFMEFI62119X0035) .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Ivashchuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivashchuk, O.O., Shchagin, A.V., Kubankin, A.S. et al. Pyroelectric Technologies, Their Applications, and Prospects for Development. Phys. Atom. Nuclei 84, 1593–1599 (2021). https://doi.org/10.1134/S1063778821090180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778821090180

Keywords:

Navigation