Skip to main content
Log in

Structure of 21,2 + states in 132,134,136Te

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Starting fromthe Skyrme interaction f_ together with the volume pairing interaction, we study the g factors for the 21,2 + excitations of 132,134,136Te. The coupling between one- and two-phonon terms in the wave functions of excited states is taken into account within the finite-rank separable approximation. Using the same set of parameters we describe the available experimental data and give the prediction for 136Te, g(21 +) = −0.18 in comparison to +0.32 in the case of 132Te.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Iachello and A. Arima, The Interacting Boson Model (Cambridge Univ. Press, Cambridge, UK, 1987).

    Book  Google Scholar 

  2. N. Pietralla, P. von Brentano, and A. F. Lisetskiy, Prog. Part. Nucl. Phys. 60, 225 (2008).

    Article  ADS  Google Scholar 

  3. A. Arima, T. Otsuka, F. Iachello, and I. Talmi, Phys. Lett. B 66, 205 (1977).

    Article  ADS  Google Scholar 

  4. T. Otsuka, A. Arima, and F. Iachello, Nucl. Phys. A 309, 1 (1978).

    Article  ADS  Google Scholar 

  5. F. Iachello, Phys. Rev. Lett. 53, 1427 (1984).

    Article  ADS  Google Scholar 

  6. N. Pietralla, C. Fransen, D. Belic, et al., Phys. Rev. Lett. 83, 1303 (1999).

    Article  ADS  Google Scholar 

  7. J. D. Holt, N. Pietralla, J. W. Holt, et al., Phys. Rev. C 76, 034325 (2007).

    Article  ADS  Google Scholar 

  8. V. Werner, D. Belic, P. von Brentano, et al., Phys. Lett. B 550, 140 (2002).

    Article  ADS  Google Scholar 

  9. C. Fransen, V. Werner, D. Bandyopadhyay, et al., Phys. Rev. C 71, 054304 (2005).

    Article  ADS  Google Scholar 

  10. E. Elhami, J. N. Orce, S. Mukhopadhyay, et al., Phys. Rev. C 75, 011301(R) (2007).

    Article  ADS  Google Scholar 

  11. V. Werner, N. Benczer-Koller, G. Kumbartzki, et al., Phys. Rev. C 78, 031301(R) (2008).

    Article  ADS  Google Scholar 

  12. E. E. Peters, A. Chakraborty, B. P. Crider, et al., Phys. Rev. C 88, 024317 (2013).

    Article  ADS  Google Scholar 

  13. D. C. Radford, C. Baktash, J. R. Beene, et al., Phys. Rev. Lett. 88, 222501 (2002).

    Article  ADS  Google Scholar 

  14. M. Danchev, G. Rainovski, N. Pietralla, et al., Phys. Rev. C 84, 061306(R) (2011).

    Article  ADS  Google Scholar 

  15. N. J. Stone, A. E. Stuchbery, M. Danchev, et al., Phys. Rev. Lett. 94, 192501 (2005).

    Article  ADS  Google Scholar 

  16. J. Terasaki, J. Engel, W. Nazarewicz, and M. Stoitsov, Phys. Rev. C 66, 054313 (2002).

    Article  ADS  Google Scholar 

  17. A. P. Severyukhin, V. V. Voronov, and Nguyen Van Giai, Phys. Rev. C 77, 024322 (2008).

    Article  ADS  Google Scholar 

  18. A. P. Severyukhin, N. N. Arsenyev, N. Pietralla, and V. Werner, Phys. Rev. C 90, 011306(R) (2014).

    Article  ADS  Google Scholar 

  19. N. Shimizu, T. Otsuka, T. Mizusaki, and M. Honma, Phys. Rev. C 70, 054313 (2004); Phys. Rev. C 74, 059903(E) (2006).

    Article  ADS  Google Scholar 

  20. N. Shimizu, T. Otsuka, T. Mizusaki, and M. Honma, J. Phys.: Conf. Ser. 49, 178 (2006).

    ADS  Google Scholar 

  21. D. Bianco, F. Andreozzi, N. Lo Iudice, et al., Phys. Rev. C 85, 034332 (2012).

    Article  ADS  Google Scholar 

  22. D. Bianco, N. Lo Iudice, F. Andreozzi, et al., Phys. Rev. C 86, 044325 (2012).

    Article  ADS  Google Scholar 

  23. D. Bianco, N. Lo Iudice, F. Andreozzi, et al., Phys. Rev. C 88, 024303 (2013).

    Article  ADS  Google Scholar 

  24. Nguyen Van Giai, Ch. Stoyanov, and V. V. Voronov, Phys. Rev. C 57, 1204 (1998).

    Article  ADS  Google Scholar 

  25. A. P. Severyukhin, V. V. Voronov, and Nguyen Van Giai, Eur. Phys. J. A 22, 397 (2004).

    Article  ADS  Google Scholar 

  26. A. P. Severyukhin, N. N. Arsenyev, and N. Pietralla, Phys. Rev. C 86, 024311 (2012).

    Article  ADS  Google Scholar 

  27. P. Ring and P. Schuck, The Nuclear Many Body Problem (Springer, Berlin, 1980).

    Book  Google Scholar 

  28. T. Lesinski, K. Bennaceur, T. Duguet, and J. Meyer, Phys. Rev. C 74, 044315 (2006).

    Article  ADS  Google Scholar 

  29. J. Terasaki, J. Engel, M. Bender, et al., Phys. Rev. C 71, 034310 (2005).

    Article  ADS  Google Scholar 

  30. V. G. Soloviev, Theory of Atomic Nuclei: Quasiparticles and Phonons (Inst. of Physics, Bristol, Philadelphia, 1992).

    Google Scholar 

  31. N. Lo Iudice, V. Yu. Ponomarev, Ch. Stoyanov, et al., J. Phys. G 39, 043101 (2012).

    Article  ADS  Google Scholar 

  32. V. V. Voronov, D. Karadjov, F. Catara, and A. P. Severyukhin, Phys. Part. Nucl. 31, 452 (2000).

    Google Scholar 

  33. C. Walz, H. Fujita, A. Krugmann, et al., Phys. Rev. Lett. 106, 062501 (2011).

    Article  ADS  Google Scholar 

  34. B. A. Brown, N. J. Stone, J. R. Stone, et al., Phys. Rev. C 71, 044317 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Severyukhin.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Severyukhin, A.P., Arsenyev, N.N., Pietralla, N. et al. Structure of 21,2 + states in 132,134,136Te. Phys. Atom. Nuclei 79, 469–473 (2016). https://doi.org/10.1134/S1063778816040190

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778816040190

Navigation