Skip to main content
Log in

Symmetry and boundness of four-particle coulomb systems

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The problem of boundness of a + b + c d four-particle Coulomb systems (quadrions) is studied versus the masses of the particles involved. Inequalities that make it possible to deduce that, if some reference quadrions form a bound state, the same is true for a large number of quadrions formed by particles having various masses were derived. A compendium of calculations for energies of reference systems that possess various symmetries [positronium molecules (e + e + e e ) and quadrions of the a + b + b b , a + b + a b , and a + a + b c types] is given, and groups of bound asymmetric quadrions corresponding to them are determined. An inequality for kinetic energies of particles that makes it possible to find out, by using asymmetric reference systems, whether specific quadrions are bound is obtained. It is shown that the boundness of many quadrions is ensured by the boundness of respective three-particle systems. The entire body of the present results permits proving that, of the total number of 406 quadrions containing electrons, muons, pions, kaons, protons, deuterons, and tritons and their antiparticles, 227 quadrions are bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. K. Rebane, Sov. J. Nucl. Phys. 55, 1671 (1992).

    Google Scholar 

  2. J.-M. Richard, Phys. Rev. A 49, 3573 (1994).

    Article  ADS  Google Scholar 

  3. T. K. Rebane, Phys. At. Nucl. 60, 1483 (1997).

    Google Scholar 

  4. K. Varga, S. Fleck, and J.-M. Richard, Europhys. Lett. 37, 183 (1997).

    Article  ADS  Google Scholar 

  5. D. Bressanini, M. Mella, and G. Morosi, Phys. Rev. A 55, 200 (1997).

    Article  ADS  Google Scholar 

  6. T. K. Rebane, Phys. At. Nucl. 62, 1630 (1999).

    Google Scholar 

  7. T. K. Rebane, Phys. At. Nucl. 57, 260 (1994).

    Google Scholar 

  8. J.-M. Richard, Phys. Rev. A 67, 034702 (2003).

    Article  ADS  Google Scholar 

  9. T. K. Rebane, Phys. At. Nucl. 72, 55 (2009).

    Article  Google Scholar 

  10. E. A. G. Armour, J.-M. Richard, and K. Varga, Phys. Rep. 413, 1 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  11. T. K. Rebane and N. N. Penkina, Opt. Spectrosc. 55, 485 (1983).

    ADS  Google Scholar 

  12. A. V. Gur’yanov and T. K. Rebane, Sov. Phys. JETP 56, 980 (1982).

    Google Scholar 

  13. T. K. Rebane and N. N. Penkina, Scaling Transformation in the Quantum Theory of Atoms and Molecules (Leningr. Gos. Univ., Leningrad, 1985) [in Russian].

    Google Scholar 

  14. D. B. Kinghorn and R. D. Poshusta, Phys. Rev. A 47, 3671 (1993).

    Article  ADS  Google Scholar 

  15. P. M. Kozlowski and L. M. Adamowisz, Phys. Rev. A 48, 1903 (1993).

    Article  ADS  Google Scholar 

  16. T. K. Rebane and V. S. Zotev, Phys.At. Nucl. 59, 816 (1996).

    Google Scholar 

  17. T. K. Rebane and V. S. Zotev, Opt. Spectrosc. 80, 355 (1996).

    ADS  Google Scholar 

  18. T. K. Rebane, V. S. Zotev, and O. N. Yusupov, Opt. Spectrosc. 81, 349 (1996).

    ADS  Google Scholar 

  19. T. K. Rebane, V. S. Zotev, and O. N. Yusupov, J. Exp. Theor. Phys. 83, 28 (1996).

    ADS  Google Scholar 

  20. J. Usukura, K. Varga, and Y. Suzuki, Phys. Rev. A 58, 1918 (1998).

    Article  ADS  Google Scholar 

  21. T. K. Rebane and N. D. Markovskii, Opt. Spectrosc. 91, 859 (2001).

    Article  ADS  Google Scholar 

  22. T. K. Rebane and N. D. Markovskii, Phys. At. Nucl. 66, 203 (2003).

    Article  Google Scholar 

  23. V. S. Zotev and T. K. Rebane, Phys. At. Nucl. 63, 40 (2000); Opt. Spectrosc. 85, 856 (1998).

    Article  Google Scholar 

  24. A. M. Frolov and V. H. Smith, Jr., J. Phys.B 29, L433 (1996).

    Article  ADS  Google Scholar 

  25. L. Wolniewicz, J. Chem. Phys. 78, 6173 (1983).

    Article  ADS  Google Scholar 

  26. S. Bubin and L. Adamowicz, Phys. Rev. A 74, 052502 (2006)

    Article  ADS  Google Scholar 

  27. A. M. Frolov and V. H. Smith, Jr., Phys. Rev. A 55, 2662 (1997).

    Article  ADS  Google Scholar 

  28. J. Mitroy, Phys. Rev. A 73, 054052 (2006).

    Google Scholar 

  29. T. K. Rebane, Teor.Mat. Fiz. 56, 432 (1983).

    MathSciNet  Google Scholar 

  30. T. K. Rebane, Phys. At. Nucl. 72, 1465 (2009).

    Article  Google Scholar 

  31. T. K. Rebane and A. V. Filinsky, Phys. At. Nucl. 60, 1816 (1997).

    Google Scholar 

  32. T. K. Rebane and A. A. Kuzminskii, Opt. Spectrosc. 93, 833 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Rebane.

Additional information

Original Russian Text © T.K. Rebane, 2012, published in Yadernaya Fizika, 2012, Vol. 75, No. 4, pp. 491–499.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rebane, T.K. Symmetry and boundness of four-particle coulomb systems. Phys. Atom. Nuclei 75, 455–463 (2012). https://doi.org/10.1134/S1063778812020196

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778812020196

Keywords

Navigation