Skip to main content
Log in

Collective excitations in the unitary correlation operator method and relativistic QRPA studies of exotic nuclei

  • Proceedings of the National Conference on Nuclear Physics “Frontiers in the Physics of Nucleus” St. Petersburg State University, Russia June 28–July 1, 2005
  • Exotic Nuclei and Fundamental Interactions
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The collective excitation phenomena in atomic nuclei are studied in two different formulations of the random-phase approximation (RPA): (i) RPA based on correlated realistic nucleon-nucleon interactions constructed within the unitary correlation operator method (UCOM) and (ii) relativistic RPA derived from effective Lagrangians with density-dependent meson-exchange interactions. The former includes the dominant interaction-induced short-range central and tensor correlations by means of unitary transformation. It is shown that UCOM-RPA correlations induced by collective nuclear vibrations recover a part of the residual long-range correlations that are not explicitly included in the UCOM Hartree-Fock ground state. Both RPA models are employed in studies of the isoscalar giant monopole resonance in closed-shell nuclei across the nuclide chart, with an emphasis on the sensitivity of its properties on the constraints for the range of the UCOM correlation functions. Within the relativistic quasiparticle RPA (RQRPA) based on the relativistic Hartree-Bogolyubov model, the occurrence of pronounced low-lying dipole excitations is predicted in nuclei towards the proton drip line. From the analysis of the transition densities and the structure of the RQRPA amplitudes, it is shown that these states correspond to the proton pygmy dipole resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972).

    Article  ADS  Google Scholar 

  2. J. Dechargé and D. Gogny, Phys. Rev. C 21, 1568 (1980).

    Article  ADS  Google Scholar 

  3. D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring, Phys. Rep. 409, 101 (2005).

    Article  ADS  Google Scholar 

  4. R. B. Wiringa, V. Stoks, and R. Schiavilla, Phys. Rev. C 51, 38 (1995).

    Article  ADS  Google Scholar 

  5. R. Machleidt, Phys. Rev. C 63, 024001 (2001).

    Google Scholar 

  6. D. R. Entem and R. Machleidt, Phys. Lett. B 524, 93 (2002).

    Article  ADS  Google Scholar 

  7. S. C. Pieper, R. B. Wiringa, and J. Carlson, Phys. Rev. C 70, 054325 (2004).

    Google Scholar 

  8. P. Navrátil, J. P. Vary, and B. R. Barrett, Phys. Rev. C 62, 054311 (2000).

    Google Scholar 

  9. S. C. Pieper et al., Phys. Rev. C 64, 014001 (2001).

  10. E. Epelbaum et al., Phys. Rev. C 66, 064001 (2002).

  11. H. Feldmeier, T. Neff, R. Roth, and J. Schnack, Nucl. Phys. A 632, 61 (1998).

    Article  ADS  Google Scholar 

  12. T. Neff and H. Feldmeier, Nucl. Phys. A 713, 311(2003).

    Article  MATH  ADS  Google Scholar 

  13. R. Roth, T. Neff, H. Hergert, and H. Feldmeier, Nucl. Phys. A 745, 3 (2004).

    Article  ADS  Google Scholar 

  14. R. Roth, H. Hergert, P. Papakonstantinou, et al., Phys. Rev. C 72, 034002 (2005).

    Google Scholar 

  15. S. K. Bogner, T. T. S. Kuo, and A. Schwenk, Phys. Rep. 386, 1 (2003).

    Article  ADS  Google Scholar 

  16. D. J. Rowe, Nuclear Collective Motion (Methuen, London, 1970).

    Google Scholar 

  17. P.-G. Reinhard and J. Friedrich, Z. Phys. A 321, 619 (1985).

    Article  Google Scholar 

  18. M. Matsuo, Nucl. Phys. A 696, 371 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  19. J. Terasaki, J. Engel, M. Bender, et al., Phys. Rev. C 71, 034310 (2005).

  20. D. Sarchi, P. F. Bortignon, and G. Coló, Phys. Lett. B 601, 27 (2004).

    Article  ADS  Google Scholar 

  21. N. Paar, P. Ring, T. Nikšić, and D. Vretenar, Phys. Rev. C 67, 034312 (2003).

    Google Scholar 

  22. L. G. Cao and Z. Y. Ma, Phys. Rev. C 71, 034305 (2005).

  23. D. Vretenar, N. Paar, P. Ring, and G. A. Lalazissis, Nucl. Phys. A 692, 496 (2001).

    Article  ADS  Google Scholar 

  24. N. Paar, D. Vretenar, and P. Ring, Phys. Rev. Lett. 94, 182501 (2005).

    Google Scholar 

  25. A. Leistenschneider et al., Phys. Rev. Lett. 86, 5442 (2001).

    Article  ADS  Google Scholar 

  26. L. Coraggio et al., Phys. Rev. C 68, 034320 (2003).

  27. V. I. Isakov et al., Eur. Phys. J. A 14, 29 (2002).

    ADS  Google Scholar 

  28. G. A. Lalazissis, J. König, and P. Ring, Phys. Rev. C 55, 540 (1997).

    Article  ADS  Google Scholar 

  29. H. Esbensen and G. F. Bertsch, Phys. Rev. C 28, 355 (1983).

    Article  ADS  Google Scholar 

  30. G. Audi and A. Wapstra, Nucl. Phys. A 595, 409 (1995).

    Article  ADS  Google Scholar 

  31. N. Ullah and D. J. Rowe, Phys. Rev. 188, 1640 (1969).

    Article  ADS  Google Scholar 

  32. T. Nikšić, D. Vretenar, P. Finelli, and P. Ring, Phys. Rev. C 66, 024306 (2002).

    Google Scholar 

  33. T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev. C 66, 064302 (2002).

    Google Scholar 

  34. S. Drożdż, S. Nishizaki, J. Speth, and J. Wambach, Phys. Rep. 197, 1 (1990).

    Article  ADS  Google Scholar 

  35. D. H. Youngblood, H. L. Clark, and Y.-W. Lui, Phys. Rev. Lett. 82, 691 (1999).

    Article  ADS  Google Scholar 

  36. S. Shlomo and D. H. Youngblood, Phys. Rev. C 47, 529 (1993).

    Article  ADS  Google Scholar 

  37. M. M. Sharma and M. N. Harakeh, Phys. Rev. C 38, 2562 (1988).

    Article  ADS  Google Scholar 

  38. Y. Suzuki, K. Ikeda, and H. Sato, Prog. Theor. Phys. 83, 180 (1990).

    Article  ADS  Google Scholar 

  39. N. Paar, T. Nikšić, D. Vretenar, and P. Ring, Phys. Lett. B 606, 288 (2005).

    Article  ADS  Google Scholar 

  40. N. Paar, T. Nikšić, D. Vretenar, and P. Ring, Int. J. Mod. Phys. E 14, 1 (2005).

    Article  Google Scholar 

  41. N. Paar, P. Papakonstantinou, V. Yu. Ponomarev, and J. Wambach, Phys. Latt. B 624, 195 (2005).

    Article  ADS  Google Scholar 

  42. N. Paar, T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev. C 69, 054303 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paar, N., Papakonstantinou, P., Hergert, H. et al. Collective excitations in the unitary correlation operator method and relativistic QRPA studies of exotic nuclei. Phys. Atom. Nuclei 69, 1345–1352 (2006). https://doi.org/10.1134/S1063778806080114

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778806080114

PACS numbers

Navigation