Skip to main content
Log in

Effect of Low-Energy Ion Assistance on the Structure and Optical Absorption of a-CH:Ag Composite Coatings

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The effect of changes in the energy and current of low-energy (100–600 eV) ion stimulation on the structure of carbon hydrogenated coatings with silver inclusions (a-CH:Ag) synthesized by pulsed-plasma deposition is investigated. Transmission electron microscopy, electron diffraction, electron-energy loss spectroscopy, X-ray photoelectron spectroscopy, and absorption in the UV and visible regions are used to study the influence of the stimulation energy and current on the manifestation of ion-induced effects, such as defect formation, selective silver sputtering, surface diffusion, and silver particle segregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. P. Guo, X. Li, L. Sun, et al., Thin Solid Films 640, 45 (2017).

    Article  ADS  Google Scholar 

  2. I. A. Zavidovskiy, O. A. Streletskiy, O. Yu. Nishchak, et al., Thin Solid Films 738, 138966 (2021).

  3. L. J. Wang, F. Zhang, A. Fong, et al., Thin Solid Films 650, 58 (2018).

    Article  ADS  Google Scholar 

  4. Š. Meškinis, T. Tamulevičius, G. Niaura, et al., J. Nanosci. Nanotechnol. 16, 10143 (2016).

    Article  Google Scholar 

  5. W.-C. Lan, S.-F. Ou, M.-H. Lin, et al., Ceram. Int. 39, 4099 (2013).

    Article  Google Scholar 

  6. H.-J. Seok, J.-K. Kim, and H.-K. Kim, Sci. Rep. 8, 13521 (2018).

    Article  ADS  Google Scholar 

  7. I. Yaremchuk, A. Tamulevičciene, T. Tamulevičius, et al., Phys. Status Solidi A 211, 329 (2014).

    Article  ADS  Google Scholar 

  8. A. Ilie, C. Durkan, W. I. Milne, et al., Phys. Rev. B 66, 045412 (2002).

  9. H. Zoubos, L. E. Koutsokeras, D. F. Anagnostopoulos, et al., Sol. Energy Mater. Sol. Cells 117, 350 (2013).

    Article  Google Scholar 

  10. I. A. Zavidovskii, O. A. Streletskii, O. Yu. Nishchak, N. F. Savchenko, S. V. Dvoryak, and A. V. Pavlikov, Tech. Phys. 65, 468 (2020).

    Article  Google Scholar 

  11. O. A. Streletskiy, I. A. Zavidovskiy, O. Yu. Nischak, et al., Thin Solid Films 671, 31 (2019).

    Article  ADS  Google Scholar 

  12. O. A. Streletskiy, I. A. Zavidovskiy, O. Yu. Nischak, et al., Vacuum 175, 109286 (2020).

  13. M. A. Grushin, E. A. Kral’kina, P. A. Neklyudova, et al., J. Phys.: Conf. Ser. 1328, 012029 (2019).

  14. V. V. Uglova, V. M. Anishchik, Y. Pauleau, et al., Vacuum 70, 181 (2003).

    Article  ADS  Google Scholar 

  15. O. A. Streletskiy, I. A. Zavidovskiy, O. Yu. Nischak, et al., Thin Solid Films 701, 137948 (2020).

  16. M. B. Guseva, N. F. Savchenko, and V. G. Babaev, Radiat. Eff. 87, 215 (1986).

    Article  Google Scholar 

  17. Yu. P. Kudryavtsev, R. B. Heimann, and S. E. Evsyukov, J. Mater. Sci. 31, 5557 (1996).

    Article  ADS  Google Scholar 

  18. L. Simonot, F. Chabanais, S. Rousselet, et al., Appl. Surf. Sci. 544, 148672 (2021).

  19. W. Ensinger, Nucl. Instrum. Methods Phys. Res., Sect. B 127–128, 796 (1997).

  20. T. Škereň, K. Temst, W. Vandervorst, et al., New J. Phys. 15, 093047 (2013).

  21. I. N. Kar’kin, Yu. N. Gornostyrev, and L. E. Kar’kina, Phys. Solid State 52, 431 (2010).

    Article  ADS  Google Scholar 

  22. A. Kolpakov, A. Poplavsky, M. Yapryntsev, et al., East Eur. J. Phys. 3, 124 (2021).

    Google Scholar 

  23. V. O. Babaev, Ju. V. Bykov, and M. B. Guseva, Thin Solid Films 38, 1 (1976).

    Article  ADS  Google Scholar 

  24. J. L. Endrino, R. Escobar Galindo, H.-S. Zhang, et al., Surf. Coat. 202, 3675 (2008).

    Article  Google Scholar 

  25. N. Laegreid and G. K. Wehner, J. Appl. Phys. 32, 365 (1961).

    Article  ADS  Google Scholar 

  26. K.-H. Müller, Phys. Rev. B 35, 7906 (1987).

    Article  ADS  Google Scholar 

  27. J. S. Colligon, J. Vac. Sci. Technol. A 13, 1649 (1995).

    Article  ADS  Google Scholar 

  28. M. P. Seah, Vacuum 34, 463 (1984).

    Article  ADS  Google Scholar 

  29. H. Yamazaki and A. Uchiyama, Surf. Sci. 287288, 308 (1993).

  30. J. Schäfer, J. Ristein, and L. Ley, J. Non-Cryst. Solids 164166, 1123 (1993).

  31. A. Qureshi, S. Shah, S. Pelagade, et al., J. Phys.: Conf. Ser. 208, 012108 (2010).

  32. K. Nagakane, Y. Yoshida, I. Hirata, et al., Dent. Mater. J. 25, 645 (2006).

    Article  Google Scholar 

  33. O. A. Streletskii, I. A. Zavidovskii, O. Yu. Nishchak, A. N. Shchegolikhin, and N. F. Savchenko, Phys. Solid State 62, 2184 (2020).

    Article  ADS  Google Scholar 

  34. A. Tóth, O. Faix, G. Rachor, et al., Appl. Surf. Sci. 72, 209 (1993).

    Article  ADS  Google Scholar 

  35. D. Gao, Q. Xu, J. Zhang, et al., Nanoscale 6, 2577 (2014).

    Article  ADS  Google Scholar 

  36. W. Guo, X. Li, J. Xu, et al., Electrochim. Acta 188, 414 (2016).

    Article  Google Scholar 

  37. L. Cao, Z. Lin, J. Huang, et al., Int. J. Hydrogen Energy 42, 876 (2017).

    Article  Google Scholar 

  38. J. Zhang, X. Liu, X. Suo, et al., Mater. Lett. 198, 164 (2017).

    Article  Google Scholar 

  39. M. Cloutier, S. Turgeon, Y. Busby, et al., ACS Appl. Mater. Interfaces 8, 21020 (2016).

    Article  Google Scholar 

  40. V. Datsyuk, M. Kalyva, K. Papagelis, et al., Carbon 46, 833 (2008).

    Article  Google Scholar 

  41. Y. Jing, H. Wang, J. Zhao, et al., Appl. Surf. Sci. 347, 499 (2015).

    Article  ADS  Google Scholar 

  42. Q. Jiang, Y. Jing, Y. Ni, et al., Microchem. J. 157, 105111 (2020).

  43. N. Frese, S. Taylor Mitchell, A. Bowers, et al., C–J. Carbon Res. 3, 23 (2017).

    Article  Google Scholar 

  44. P. Stefanov, M. Shipochka, P. Stefchev, et al., J. Phys.: Conf. Ser. 100, 012039 (2008).

  45. F. Mendes, A. de Siervo, W. Reis de Araujo, et al., Carbon 159, 110 (2020).

    Article  Google Scholar 

  46. H. Derouiche, Dyes Pigm. 63, 277 (2004).

    Article  Google Scholar 

  47. J. Y. Liu, Z. Wang, J. Y. Chen, et al., J. Nano Res. 30, 50 (2015).

    Article  Google Scholar 

  48. A. I. Boronin, S. V. Koscheev, and G. M. Zhidomirov, J. Electron Spectrosc. Relat. Phenom. 96, 43 (1998).

    Article  Google Scholar 

  49. P. S. de Carli and J. C. Jamieson, Science (Washington, DC, U. S.) 133, 1821 (1961).

    Article  ADS  Google Scholar 

  50. Z. Czigány and L. Hultman, Ultramicroscopy 110, 815 (2010).

    Article  Google Scholar 

  51. J. Bruley, D. B. Williams, J. J. Cuomo, et al., J. Microscopy 180, 22 (1995).

    Article  Google Scholar 

  52. M. A. Caro, G. Csányi, T. Laurila, et al., Phys. Rev. B 102, 174201 (2020).

  53. J. Schwan, S. Ulrich, H. Roth, et al., J. Appl. Phys. 79, 1416 (1996).

    Article  ADS  Google Scholar 

  54. S. A. R. Shahamirifard, M. Ghaedi, M. Montazerozohori, et al., Photochem. Photobiol. Sci. 17, 245 (2018).

    Article  Google Scholar 

  55. K. Akagi and H. Shirakawa, Macromol. Symp. 104, 137 (1996).

    Article  Google Scholar 

  56. A. C. Ferrari and J. Robertson, Phys. Rev. B 63, 121405 (2001).

  57. A. Jurkevičiūt\({{\dot {e}}}\), G. Klimait\({{\dot {e}}}\), T. Tamulevičius, et al., Adv. Eng. Mater. 22, 1900951 (2020).

  58. M. Rybachuk and J. M. Bell, Carbon 47, 2481 (2009).

    Article  Google Scholar 

  59. A. Habibi, S. M. Mousavi Khoie, F. Mahboubi, et al., Surf. Coat. 309, 945 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

One of the authors (I.A.Z.) acknowledges the support of the Theoretical Physics and Mathematics Advancement Foundation “BASIS.” We thank S.S. Abramchuk for his help in conducting the TEM studies.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-32-90077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Zavidovskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavidovskii, I.A., Nishchak, O.Y., Savchenko, N.F. et al. Effect of Low-Energy Ion Assistance on the Structure and Optical Absorption of a-CH:Ag Composite Coatings. J. Exp. Theor. Phys. 134, 682–692 (2022). https://doi.org/10.1134/S1063776122050144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122050144

Navigation