Skip to main content
Log in

Laser-Induced Generation of X-Ray Radiation and Its Impact on Material in the Context of Inertial Confinement Fusion Problems

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The thermodynamic state of a high-temperature laser-induced emitting plasma has been studied based on numerical simulation data. Laser-induced X-ray radiation characteristics versus wavelength and intensity of an incident Nd-laser pulse have been discussed for those ranges of these parameters where the condition for compression of an inertial-confinement fusion target by an X-ray pulse is met. Another object of investigation was the thermodynamic state of a plasma produced by a laser-induced X-ray radiation pulse acting on plane targets made of light materials that are most in demand as materials for a target outer layer (so-called ablator), within which a target-compressing pressure is developed. The thermodynamic characteristics of the plasma produced by the laser pulse have been compared with those of the plasma produced by the pulse of laser-induced X-ray radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. Nuckolls and L. Wood, Nature (London, U.K.) 239, 139 (1972).

    Article  ADS  Google Scholar 

  2. J. Lindl, Phys. Plasmas 2, 3933 (1995).

    Article  ADS  Google Scholar 

  3. J. D. Lindl, P. Amendt, R. L. Berger, et al., Phys. Plasmas 11, 339 (2004).

    Article  ADS  Google Scholar 

  4. M. Andre, in Proceedings of the 1st SPIE International Conference on Solid State Laser for Application to ICF, Monterey, CA (1999), p. 39.

  5. S. A. Bel’kov, S. G. Garanin, V. G. Rogachev, et al., in Proceedings of the 48th International Zvenigorod Conference on Plasma Physics and Controlled Thermonuclear Synthesis, Zvenigorod (2021).

  6. Z. Fan, M. Chen, Z. Dai, et al., arXiv: 1303.1252 [physics.plasm-ph].

  7. X. T. He, Plenary Presentation at 8th International Conference on Inertial Fusion Sciences and Applications IFSA, Nara, Japan, 2013.

  8. Yu. V. Afanasiev and S. Yu. Gus’kov, in Nuclear Fusion by Inertial Confinement, Ed. by G. Velarde (CRC, Boca Raton, FL, 1993), p. 99.

    Google Scholar 

  9. S. W. Haan, A. L. Kritcher, D. S. Clark, et al., Report No. LLNL-TR-741418 (2017).

  10. G. A. Vergunova and V. B. Rozanov, Laser Part. Beams 17, 579 (1999).

    Article  ADS  Google Scholar 

  11. A. F. Nikiforov, V. G. Novikov, and V. B. Uvarov, Quantum-Statistical Models of Hot Dense Matter: Methods for Computation Opacity and Equation of State (Fizmatlit, Moscow, 2000; Springer, Berlin, 2005).

  12. D. A. Kim, I. Yu. Vichev, A. D. Solomyannaya, and A. S. Grushin, KIAM Preprint No. 58 (Keldysh Inst. Appl. Math., Moscow, 2020).

    Google Scholar 

  13. W. M. Manheimer, D. G. Colombant, and J. H. Gardner, Phys. Fluids 25, 1644 (1982).

    Article  ADS  Google Scholar 

  14. Y. B. Zel’dovich and Y. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic, New York, 1966).

    Google Scholar 

  15. Yu. V. Afanas’ev, E. G. Gamalii, and V. B. Rozanov, Tr. FIAN 134, 10 (1982).

    Google Scholar 

  16. R. E. Marshak, Phys. Fluids 1, 24 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  17. G. A. Vergunova, A. S. Grushin, V. G. Novikov, et al., J. Russ. Laser Res. 34, 355 (2013).

    Article  Google Scholar 

  18. W. C. Mead, E. M. Campbell, K. Estabrook, et al., Phys. Fluids 26, 2316 (1983).

    Article  ADS  Google Scholar 

  19. H. Nishimura, F. Matsuoka, M. Yagi, et al., Phys. Fluids 26, 1688 (1983).

    Article  ADS  Google Scholar 

  20. M. D. Rosen, D. W. Phillion, V. C. Rupert, et al., Phys. Fluids 22, 2020 (1979).

    Article  ADS  Google Scholar 

  21. W. Shang, J. Yang, W. Zhang, et al., Appl. Phys. Lett. 108, 064102 (2016).

  22. L. J. Suter, R. L. Kauffman, C. B. Darrow, et al., Phys. Plasmas 3, 2057 (1996).

    Article  ADS  Google Scholar 

  23. S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion-Beam Plasma Interaction, Hydrodynamics, Dense Plasma Physics (Clarendon, Oxford Univ. Press, Oxford, 2004).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank I.Ya. Doskoch for valuable discussion and assistance.

Funding

This study was supported by the Russian Foundation for Basic Research, grant no. 19-02-00299A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Vergunova.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vergunova, G.A., Gus’kov, S.Y., Vichev, I.Y. et al. Laser-Induced Generation of X-Ray Radiation and Its Impact on Material in the Context of Inertial Confinement Fusion Problems. J. Exp. Theor. Phys. 134, 754–761 (2022). https://doi.org/10.1134/S1063776122050132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122050132

Navigation