Skip to main content
Log in

Pseudoatom Molecular Dynamics Method for Calculating the Coefficients of Viscosity and Ion Self-Diffusion in a Dense Plasma

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A semiclassical version of the pseudoatom molecular dynamics method is used to calculate the coefficients of dynamic viscosity and ion self-diffusion of a warm and moderately heated dense plasma of a number of chemical elements, which are of interest for the high-energy-density physics, the solution of a number of applied geophysical and planetology problems, and a comparison with the calculated data of other authors. The effects caused by the Coulomb interaction in a medium and the quantum properties of the electronic subsystem of plasma are taken into account. Analytical approximations are proposed for the coefficients of viscosity and ion self-diffusion, and they can be used to simulate the dynamics of dense ionized matter for describing experiments in the high-energy-density physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. In Section 2, the Hartree atomic units (e = \(\hbar \) = me = 1) are used.

  2. In the spherically symmetric case under study, the three-dimensional integral Fourier transform is reduced to Fourier sine transform, but, of the function multiplied by 4πr/k during the forward transform and of the function multiplied by k/(πr) during the inverse transform; here, r is the radial coordinate and k is the wavenumber.

  3. Starrett and Saumon [23, 24] showed that the substitution of a steplike Heaviside function for RDF in Eqs. (7) and (9) does not cause a substantial change in the screening electron density. The search for the next approximations for RDF, gII(r) ≠ \(g_{{II}}^{0}\)(r) can be based on both the results of PAMD simulation of the ionic microstructure of matter and the solution to a system of Ornstein–Zernike equations [43] for determining realistic gII(r) RDFs [14, 15, 44]. A simultaneous iteration refinement of RDF and the screening electron density allows us to obtain a self-consistent solution for the Starrett–Saumon model, which has an insignificant meaning in terms of PAMD because it takes a huge amount of calculations.

  4. The logarithmic dependence on arguments allows Eqs. (17) and (18) to be applied in problems with a strong space and/or time inhomogeneity of the ρ and T fields.

  5. In our PAMD calculations, the maximum statistical error of the ion self-diffusion coefficients with respect to their averages does not exceed 10% and that of the coefficient of viscosity, 15%, which is comparable with the accuracy of results calculated by QMD with a semiclassical (OFMD) description of the electron subsystem [36, 37].

  6. gII(r) in [9] was calculated by the same authors using the same model as in [35].

  7. The time step of calculation was 0.15 fs, whereas in [36] it was 2.5–5 fs.

  8. Note that the application of Eqs. (17) and (18) does not imply an additional calculation of the degree of plasma ionization, as in the case of approximations in [55, 56].

  9. A similar statistical error is also characteristic of the transport coefficients calculated by other methods (see, e.g., [33, 36, 37]).

REFERENCES

  1. D. Marx and J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (Cambridge Univ. Press, Cambridge, 2009).

    Book  Google Scholar 

  2. A. F. Nikiforov, V. G. Novikov, and B. V. Uvarov, Quantum-Statistical Models of High-Temperature Plasma and Methods for Calculating Rosselland Ranges and Equations of State (Fizmatlit, Moscow, 2000) [in Russian].

    Google Scholar 

  3. D. A. Liberman, Phys. Rev. B 20, 4981 (1979).

    Article  ADS  Google Scholar 

  4. T. T. Blenski and B. Cichocki, Phys. Rev. E 75, 056402 (2007).

  5. T. Blenski, R. Piron, C. Caizergues, et al., High Energy Density Phys. 9, 687 (2013).

    Article  ADS  Google Scholar 

  6. D. C. Swift, T. Lockard, R. G. Kraus, et al., Phys. Rev. E 99, 063210 (2019).

  7. V. P. Silin, Introduction to Kinetic Theory of Gases (Fiz. Inst. im. P. N. Lebedeva RAN, Moscow, 1998) [in Russian].

  8. E. M. Livshits and L. P. Pitaevskii, Physical Kinetics (Fizmatlit, Moscow, 2002; Pergamon, Oxford, 1981).

  9. F. Lambert, J. Clérouin, and G. Zérah, Phys. Rev. E 73, 016403 (2006).

  10. J.-F. Danel, L. Kazandjian, and G. Zérah, Phys. Rev. E 79, 066408 (2009).

  11. J.-F. Danel and L. Kazandjian, Phys. Rev. E 91, 013103 (2015).

  12. J.-F. Danel, L. Kazandjian, and R. Piron, Phys. Rev. E 93, 043210 (2016).

  13. D. Sheppard, J. D. Kress, S. Crockett, et al., Phys. Rev. E 90, 063314 (2014).

  14. A. L. Falkov, A. A. Ovechkin, and P. A. Loboda, in Book of Abstracts of Annual Moscow Workshop on the Non-Ideal Plasma Physics, Moscow, 2015, Ed. by V. E. Fortov, I. L. Iosilevskiy, and P. R. Levashov (Russ. Akad. Nauk, Moscow, 2015), p. 10.

  15. A. A. Ovechkin, P. A. Loboda, and A. L. Falkov, High Energy Density Phys. 20, 38 (2016).

    Article  ADS  Google Scholar 

  16. C. E. Starrett, J. Daligault, and D. Saumon, Phys. Rev. E 91, 013104 (2015).

  17. C. E. Starrett and D. Saumon, Phys. Rev. E 93, 063206 (2016).

  18. A. A. Ovechkin, A. L. Falkov, P. A. Sapozhnikov, et al., in Proceedings of 33rd Iternational Conference on Equation of State for Matter, Elbrus, 2018, Ed. by V. E. Fortov, B. S. Karamurzov, V. P. Efremov, et al. (Russ. Akad. Nauk, Moscow, 2018), p. 57.

  19. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).

    MATH  Google Scholar 

  20. D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic, London, 2002).

    MATH  Google Scholar 

  21. D. S. Rapaport, The Art of Molecular Dynamics (RKhD, Inst. Komp. Issled., Moscow, 2012) [in Russian].

  22. C. E. Starrett and D. Saumon, Phys. Rev. E 85, 026403 (2012).

  23. C. E. Starrett and D. Saumon, Phys. Rev. E 87, 013104 (2013).

  24. C. E. Starrett and D. Saumon, High Energy Density Phys. 10, 35 (2014).

    Article  ADS  Google Scholar 

  25. A. N. Souza, D. J. Perkins, C. E. Starrett, et al., Phys. Rev. E 89, 023108 (2014).

  26. L. B. Fletcher, H. J. Lee, T. Döppner, et al., Nat. Photon. 9, 247 (2015).

    Article  Google Scholar 

  27. H. M. van Horn, Science (Washington, DC, U. S.) 252, 3848 (1991).

    Article  Google Scholar 

  28. R. A. Secco, in Mineral Physics and Crystallography, Ed. by T. J. Ahrens (Am. Geophys. Union, Washington, 1995), p. 218.

    Google Scholar 

  29. G. A. de Wijs, G. Kresse, L. Voĉadlo, et al., Nature (London, U.K.) 392, 805 (1998).

    Article  ADS  Google Scholar 

  30. D. Alfé, G. Kresse, and M. J. Gillan, Phys. Rev. B 61, 132 (2000).

    Article  ADS  Google Scholar 

  31. M. D. Ruter, R. A. Secco, H. Liu, et al., Phys. Rev. B 66, 060102 (2002).

  32. V. N. Zharkov, Phys. Usp. 52, 93 (2009).

    Article  ADS  Google Scholar 

  33. M. Pozzo, C. Davies, D. Gubbins, et al., Phys. Rev. B 87, 014110 (2013).

  34. K. D. Litasov and A. F. Shatskii, Composition and Structure of the Earth’s Core (Sib. Otdel. RAN, Novosibirsk, 2016) [in Russian].

    Google Scholar 

  35. F. Lambert, J. Clérouin, and S. Mazevet, Europhys. Lett. 75, 681 (2006).

    Article  ADS  Google Scholar 

  36. J. D. Kress, J. S. Cohen, D. P. Kilcrease, et al., High Energy Density Phys. 7, 155 (2011).

    Article  ADS  Google Scholar 

  37. C. Ticknor, J. D. Kress, and L. A. Collins, Phys. Rev. E 93, 063208 (2016).

  38. A. J. White, L. A. Collins, J. D. Kress, et al., Phys. Rev. E 95, 063202 (2017).

  39. K. P. Driver and B. Militzer, Phys. Rev. Lett. 108, 155502 (2012).

  40. G. Faussurier, C. Blancard, P. Cossé, et al., Phys. Plasmas 17, 052707 (2010).

  41. G. Chabrier, J. Phys. (Paris) 51, 1607 (1990).

    Article  ADS  Google Scholar 

  42. S. Ichimaru and K. Utsumi, Phys. Rev. B 24, 7385 (1981).

    Article  ADS  Google Scholar 

  43. N. P. Kovalenko and I. Z. Fisher, Sov. Phys. Usp. 15, 592 (1972).

    Article  ADS  Google Scholar 

  44. R. Piron and T. Blenski, Phys. Rev. E 83, 026403 (2011).

  45. D. Ofer, E. Nardi, and Y. Rosenfeld, Phys. Rev. A 38, 5801 (1988).

    Article  ADS  Google Scholar 

  46. M. Manninen, R. Nieminen, P. Hautojarvi, et al., Phys. Rev. B 12, 4012 (1975).

    Article  ADS  Google Scholar 

  47. N. S. Bakhvalov, Numerical Methods (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  48. G. Pantis, J. Comp. Phys. 17, 229 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  49. J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, New York, 2006).

    MATH  Google Scholar 

  50. D. Dubbeldam, D. C. Ford, D. E. Ellis, et al., Mol. Simul. 35, 1084 (2009).

    Article  Google Scholar 

  51. J.-F. Danel, L. Kazandjian, and G. Zerah, Phys. Rev. E 85, 066701 (2012).

  52. V. E. Fortov, Powerful Shock Waves on Earth and in Space (Fizmatlit, Moscow, 2019) [in Russian].

    Google Scholar 

  53. J. M. J. van Leeuwen, J. Groeneveld, and J. de Boer, Physica (Amsterdam, Neth.) 25, 792 (1959).

  54. E. R. Meyer, J. D. Kress, L. A. Collins, et al., Phys. Rev. E 90, 043101 (2014).

  55. S. Bastea, Phys. Rev. E 71, 056405 (2005).

  56. J. Daligault, K. S. Rasmussen, and S. D. Baalrud, Phys. Rev. E 90, 033105 (2014).

  57. J. Wallenborn and M. Baus, Phys. Rev. A 18, 1737 (1978).

    Article  ADS  Google Scholar 

  58. A. A. Ovechkin, P. A. Loboda, V. G. Novikov, et al., High Energy Density Phys. 13, 20 (2014).

    Article  ADS  Google Scholar 

  59. A. A. Ovechkin, P. A. Loboda, and A. L. Falkov, High Energy Density Phys. 30, 29 (2019).

    Article  ADS  Google Scholar 

  60. A. A. Ovechkin, P. A. Loboda, A. L. Falkov, et al., Phys. Rev. E 103, 053206 (2021).

  61. B. Wilson, V. Sonnad, P. Sterne, et al., J. Quant. Spectrosc. Radiat. Transfer 99, 658 (2006).

    Article  ADS  Google Scholar 

  62. J. Daligault, Phys. Rev. Lett. 96, 065003 (2006).

  63. J. Daligault, Phys. Rev. Lett. 103, 029901 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. L. Falkov, P. A. Loboda or A. A. Ovechkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falkov, A.L., Loboda, P.A., Ovechkin, A.A. et al. Pseudoatom Molecular Dynamics Method for Calculating the Coefficients of Viscosity and Ion Self-Diffusion in a Dense Plasma. J. Exp. Theor. Phys. 134, 371–383 (2022). https://doi.org/10.1134/S1063776122030049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776122030049

Navigation