Skip to main content
Log in

Construction of Black Hole Shadows: An Analytical Theory

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Analytical methods for the construction of black hole shadows in the Kerr–Newman metric and possibilities for their observation through very long baseline interferometry (VLBI) are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Event Horizon Telescope Collab., Astrophys. J. Lett. 875, L1 (2019).

    Article  ADS  Google Scholar 

  2. Event Horizon Telescope Collab., Astrophys. J. Lett. 875, L2 (2019).

    Article  ADS  Google Scholar 

  3. Event Horizon Telescope Collab., Astrophys. J. Lett. 875, L3 (2019).

    Article  ADS  Google Scholar 

  4. Event Horizon Telescope Collab., Astrophys. J. Lett. 875, L4 (2019).

    Article  ADS  Google Scholar 

  5. Event Horizon Telescope Collab., Astrophys. J. Lett. 875, L5 (2019).

    Article  ADS  Google Scholar 

  6. Event Horizon Telescope Collab., Astrophys. J. Lett. 875, L6 (2019).

    Article  ADS  Google Scholar 

  7. M. D. Johnson et al., Sci. Adv. 6, 1310 (2020).

    Article  ADS  Google Scholar 

  8. N. S. Kardashev et al., Phys. Usp. 57, 1199 (2014).

    Article  ADS  Google Scholar 

  9. T. Bronzwaer et al., Astron. Astrophys. 613, 2 (2018).

    Article  Google Scholar 

  10. M. Moscibrodzka and C. F. Gammie, Mon. Not. R. Astron. Soc. 475, 43 (2018).

    Article  ADS  Google Scholar 

  11. S. C. Noble, P. K. Leung, C. F. Gammie, and L. G. Book, Class. Quant. Grav. 24, 259 (2007).

    Article  ADS  Google Scholar 

  12. J. Dexter, Mon. Not. R. Astron. Soc. 462, 115 (2016).

    Article  ADS  Google Scholar 

  13. S. E. Gralla and A. Lupsasca, arXiv: 2007.10336.

  14. S. E. Gralla and A. Lupsasca, arXiv: 2008.03879.

  15. J. R. Farah, D. W. Pesce, M. D. Johnson, and L. L. Blackburn, Astrophys. J. 900, 77 (2020).

    Article  ADS  Google Scholar 

  16. D. V. Gal’tsov, Particles and Fields in the Vicinity of Black Holes (Mosk. Gos. Univ., Moscow, 1986) [in Russian].

    Google Scholar 

  17. S. E. Gralla and A. Lupsasca, Phys. Rev. D 101, 044031 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  18. S. E. Gralla, A. Lupsasca, Phys. Rev. D 101, 044032 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  19. C. T. Cunnungham and J. M. Bardeen, Astrophys. J. 173, L137 (1972).

    Article  ADS  Google Scholar 

  20. A. R. Thompson, J. M. Moran, and G. W. J. George, Interferometry and Synthesis in Radio Astronomy (Springer, Cham, 2017).

    Book  Google Scholar 

  21. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series, and Products (Fizmatgiz, Moscow, 1963; Academic, New York, 1980).

  22. P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists (Springer, Berlin, 1971).

    Book  Google Scholar 

  23. S. E. Vázquez and E. P. Esteban, Nuovo Cim. B 119, 489 (2004).

    ADS  Google Scholar 

  24. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Natl. Bureau Stand., Washington, DC, 1972).

    MATH  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-02-00469-a) and the State assignment within the Millimetron scientific program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Chernov.

Additional information

Translated by V. Astakhov

Appendices

APPENDIX A

The metric coefficients of the Kerr–Newman metric are [16]

$${{g}_{{tt}}} = - \left( {1 - \frac{{2Mr - {{Q}^{2}}}}{\Sigma }} \right),\quad {{g}_{{rr}}} = \frac{\Sigma }{\Delta },\quad {{g}_{{\theta \theta }}} = \Sigma ,$$
$${{g}_{{\phi \phi }}} = \frac{{{{{\sin }}^{2}}\theta }}{\Sigma }({{({{r}^{2}} + {{a}^{2}})}^{2}} - \Delta {{a}^{2}}{{\sin }^{2}}\theta ),$$
$${{g}_{{t\phi }}} = - \frac{{(2Mr - {{Q}^{2}})a{{{\sin }}^{2}}\theta }}{\Sigma },\quad {{g}^{{\theta \theta }}} = \frac{1}{\Sigma },$$
$${{g}^{{tt}}} = - \frac{{{{{({{r}^{2}} + {{a}^{2}})}}^{2}} - \Delta {{a}^{2}}{{{\sin }}^{2}}\theta }}{{\Sigma \Delta }},\quad {{g}^{{rr}}} = \frac{\Delta }{\Sigma },$$
$${{g}^{{\phi \phi }}} = \frac{{\Delta - {{a}^{2}}{{{\sin }}^{2}}\theta }}{{\Delta \Sigma {{{\sin }}^{2}}\theta }},\quad {{g}^{{t\phi }}} = - \frac{{(2Mr - {{Q}^{2}})a}}{{\Sigma \Delta }}.$$

The determinant of the metric is [16]

$$g = - {{\Sigma }^{2}}{{\sin }^{2}}\theta .$$

The Christoffel symbols are [16]

$$\Gamma _{{tr}}^{t} = - \frac{{pb}}{\Delta },\quad \Gamma _{{r\phi }}^{t} = \frac{{a{{{\sin }}^{2}}\theta }}{\Delta }(pb + 2qr),$$
$$\Gamma _{{\theta \phi }}^{t} = - \frac{{q{{a}^{3}}}}{\Sigma }{{\sin }^{2}}\theta \sin 2\theta ,\quad \Gamma _{{tt}}^{r} = - \frac{{\Delta p}}{\Sigma },$$
$$\Gamma _{{rr}}^{r} = \frac{r}{\Sigma } + \frac{{M - r}}{\Delta },\quad \Gamma _{{r\theta }}^{r} = - \frac{{{{a}^{2}}\sin 2\theta }}{{2\Sigma }},$$
$$\Gamma _{{\theta \theta }}^{\theta } = - \frac{{{{a}^{2}}\sin 2\theta }}{{2\Sigma }},\quad \Gamma _{{rr}}^{\theta } = \frac{{{{a}^{2}}\sin 2\theta }}{{2\Sigma \Delta }},$$
$$\Gamma _{{\theta \theta }}^{r} = - \frac{{r\Delta }}{\Sigma },\quad \Gamma _{{r\theta }}^{\theta } = \frac{r}{\Sigma },$$
$$\Gamma _{{\phi \phi }}^{r} = - \frac{{\Delta {{{\sin }}^{2}}\theta }}{\Sigma }(r + p{{a}^{2}}{{\sin }^{2}}\theta ),\quad \Gamma _{{t\theta }}^{t} = \frac{{q{{a}^{2}}\sin 2\theta }}{\Sigma },$$
$$\Gamma _{{tt}}^{\theta } = \frac{{q{{a}^{2}}\sin 2\theta }}{{{{\Sigma }^{2}}}},\quad \Gamma _{{t\phi }}^{r} = \frac{{a\Delta p{{{\sin }}^{2}}\theta }}{\Sigma },$$
$$\Gamma _{{t\phi }}^{\theta } = - \frac{{qab\sin 2\theta }}{{{{\Sigma }^{2}}}},\quad \Gamma _{{t\theta }}^{\phi } = \frac{{2qa\cos \theta }}{{\Sigma \sin \theta }},$$
$$\Gamma _{{\phi \phi }}^{\theta } = - \frac{{\sin 2\theta }}{{2\Sigma }}\left[ {b - 2{{a}^{2}}q{{{\sin }}^{2}}\theta \left( {2 + \frac{{{{a}^{2}}{{{\sin }}^{2}}\theta }}{\Sigma }} \right)} \right],$$
$$\Gamma _{{r\phi }}^{\phi } = \frac{r}{\Delta }(1 + 2q)\,\, + \,\,{{a}^{2}}p\frac{{{{{\sin }}^{2}}\theta }}{\Delta },$$
$$\Gamma _{{\theta \phi }}^{\phi } = \frac{{\cos \theta }}{{\Delta \sin \theta }}\left[ {(1 + 2q)(b - 2q{{a}^{2}}{\text{si}}{{{\text{n}}}^{2}}\theta ) - \frac{{2q{{a}^{2}}b{\text{si}}{{{\text{n}}}^{2}}\theta }}{\Sigma }} \right],$$
$$\Gamma _{{tr}}^{\phi } = - a\frac{{r{{Q}^{2}} + M(\Sigma - 2{{r}^{2}})}}{{\Delta {{\Sigma }^{2}}}},$$

where

$$\begin{gathered} b = {{r}^{2}} + {{a}^{2}},\quad p = \frac{{r{{Q}^{2}} + M(\Sigma - 2{{r}^{2}})}}{{{{\Sigma }^{2}}}}, \\ q = \frac{{{{Q}^{2}} - 2Mr}}{{2\Sigma }}. \\ \end{gathered} $$

APPENDIX B

The expression for the radial potential is a quartic algebraic equation, which is convenient to represent as [17]

$$R = (r - {{r}_{a}})(r - {{r}_{b}})(r - {{r}_{c}})(r - {{r}_{d}}),$$

where the roots of the equation are written in decreasing order, ra > rb > rc > rd. The solution of this equation can be written in an explicit form [17] as

$${{r}_{a}} = z + \sqrt { - \frac{\mathcal{A}}{2} - {{z}^{2}} - \frac{\mathcal{B}}{{4z}}} ,$$
$${{r}_{b}} = z - \sqrt { - \frac{\mathcal{A}}{2} - {{z}^{2}} - \frac{\mathcal{B}}{{4z}}} ,$$
$${{r}_{c}} = - z + \sqrt { - \frac{\mathcal{A}}{2} - {{z}^{2}} + \frac{\mathcal{B}}{{4z}}} ,$$
$${{r}_{d}} = - z - \sqrt { - \frac{\mathcal{A}}{2} - {{z}^{2}} + \frac{\mathcal{B}}{{4z}}} ,$$

where

$$\mathcal{A} = {{a}^{2}} - \eta - {{\lambda }^{2}},$$
$$\mathcal{B} = 2M(\eta + {{(\lambda - a)}^{2}}),$$
$$\mathcal{C} = - {{a}^{2}}\eta - {{Q}^{2}}(\eta + {{(a - \lambda )}^{2}}),$$
$$\mathcal{P} = - \frac{{{{A}^{2}}}}{{12}} - \mathcal{C},$$
$$\mathcal{Q} = - \frac{\mathcal{A}}{3}\left[ {{{{\left( {\frac{\mathcal{A}}{6}} \right)}}^{2}} - \mathcal{C}} \right] - \frac{{{{\mathcal{B}}^{2}}}}{8},$$
$${{\omega }_{ \pm }} = \sqrt[3]{{ - \frac{\mathcal{Q}}{2} \pm \sqrt {{{{\left( {\frac{\mathcal{P}}{3}} \right)}}^{3}} + {{{\left( {\frac{\mathcal{Q}}{2}} \right)}}^{2}}} }},$$
$$z = \sqrt {\frac{{{{\omega }_{ + }} + {{\omega }_{ - }}}}{2} - \frac{\mathcal{A}}{6}} > 0.$$

APPENDIX C

The incomplete elliptic integrals of the first, second, and third types are defined as follows:

$$F(\phi ,k) = \int\limits_0^\phi {\frac{{d\theta }}{{\sqrt {1 - k{{{\sin }}^{2}}\theta } }},} $$
$$E(\phi ,k) = \int\limits_0^\phi {\sqrt {1 - k{{{\sin }}^{2}}\theta } d\theta ,} $$
$$\Pi ({{\alpha }^{2}},\phi ,k) = \int\limits_0^\phi {\frac{1}{{1 - {{\alpha }^{2}}{{{\sin }}^{2}}\theta }}} \frac{{d\theta }}{{\sqrt {1 - k{{{\sin }}^{2}}\theta } }}.$$

The derivative of the elliptic integral of the second type E with respect to the parameter k is specified as

$$E{\kern 1pt} '(\phi ,k) = \frac{{\partial E(\phi ,k)}}{{\partial k}} = \frac{{E(\phi ,k) - F(\phi ,k)}}{{2k}}.$$

The complete elliptic integrals are defined by the condition ϕ = π/2 and are designated as

$$K(k) = F(\pi {\text{/}}2,k),\quad E(k) = E(\pi {\text{/}}2,k),$$
$$\Pi (n,k) = \Pi (n,\pi {\text{/}}2,k).$$

Let us introduce the notation

$$\nu = \arcsin \sqrt {\frac{{({{r}_{b}} - {{r}_{d}})(r - {{r}_{a}})}}{{({{r}_{a}} - {{r}_{d}})(r - {{r}_{b}})}}} ,\quad {{\alpha }^{2}} = \frac{{{{r}_{a}} - {{r}_{d}}}}{{{{r}_{b}} - {{r}_{d}}}},$$
$$g = \frac{2}{{\sqrt {({{r}_{a}} - {{r}_{c}})({{r}_{b}} - {{r}_{d}})} }},\quad k = \frac{{({{r}_{b}} - {{r}_{c}})({{r}_{a}} - {{r}_{d}})}}{{({{r}_{a}} - {{r}_{c}})({{r}_{b}} - {{r}_{d}})}}.$$

To calculate the integrals I, we used the following tabulated integrals for the case where r > ra. This integral is calculated in [21]:

$$\int\limits_{{{r}_{a}}}^r {\frac{{dx}}{{\sqrt {(x - {{r}_{a}})(x - {{r}_{b}})(x - {{r}_{c}})(x - {{r}_{d}})} }} = gF(\nu ,k).} $$

This integral is calculated in [21]:

$$\begin{gathered} \int\limits_{{{r}_{a}}}^r {\frac{{xdx}}{{\sqrt {(x - {{r}_{a}})(x - {{r}_{b}})(x - {{r}_{c}})(x - {{r}_{d}})} }}} \\ = g[({{r}_{a}} - {{r}_{b}})\Pi ({{\alpha }^{2}},\nu ,k) + {{r}_{b}}F(\nu ,k)]. \\ \end{gathered} $$

This integral is calculated in [21]:

$$\begin{gathered} \int\limits_{{{r}_{a}}}^r {\frac{{dx}}{{(p - x)\sqrt {(x - {{r}_{a}})(x - {{r}_{b}})(x - {{r}_{c}})(x - {{r}_{d}})} }}} \\ = \frac{g}{{(p - {{r}_{a}})(p - {{r}_{b}})}}\left[ {({{r}_{a}} - {{r}_{b}})\Pi \left( {{{\alpha }^{2}}\frac{{p - {{r}_{b}}}}{{p - {{r}_{a}}}},\nu ,k} \right)} \right. \\ \left. {_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{}}}}}}}}}}}}}}}}}}}} + \,(p - {{r}_{a}})F(\nu ,k)} \right]. \\ \end{gathered} $$

This integral is calculated on page 130 in [22]:

$$\begin{gathered} \int\limits_{{{r}_{a}}}^r {\frac{{{{x}^{2}}dx}}{{\sqrt {(x - {{r}_{a}})(x - {{r}_{b}})(x - {{r}_{c}})(x - {{r}_{d}})} }}} \\ = gr_{a}^{2}\int\limits_0^{{{u}_{1}}} {\frac{{{{{(1 - \alpha _{1}^{2}{\text{s}}{{{\text{n}}}^{2}}u)}}^{2}}}}{{{{{(1 - {{\alpha }^{2}}{\text{s}}{{{\text{n}}}^{2}}u)}}^{2}}}}du} , \\ \end{gathered} $$

where

$${\text{am}}{{u}_{1}} = \arcsin \sqrt {\frac{{({{r}_{b}} - {{r}_{d}})(r - {{r}_{a}})}}{{({{r}_{a}} - {{r}_{d}})(r - {{r}_{b}})}}} ,\quad \alpha _{1}^{2} = \frac{{{{r}_{a}} - {{r}_{d}}}}{{{{r}_{b}} - {{r}_{d}}}}\frac{{{{r}_{b}}}}{{{{r}_{a}}}}$$

and am denotes the amplitude of u1.

This integral is calculated on page 205 in [22]:

$$\begin{gathered} \int {\frac{{{{{(1 - \alpha _{1}^{2}{\text{s}}{{{\text{n}}}^{2}}u)}}^{2}}}}{{{{{(1 - {{\alpha }^{2}}{\text{s}}{{{\text{n}}}^{2}}u)}}^{2}}}}} du \\ = \frac{{\alpha _{1}^{4}}}{{{{\alpha }^{4}}}}\left[ {{{V}_{0}} + 2\frac{{{{\alpha }^{2}} - \alpha _{1}^{2}}}{{\alpha _{1}^{2}}}{{V}_{1}} + \frac{{{{{({{\alpha }^{2}} - \alpha _{1}^{2})}}^{2}}}}{{\alpha _{1}^{4}}}{{V}_{2}}} \right], \\ \end{gathered} $$

where (see page 201 [22])

$${{V}_{0}} = \int {du = F(\nu ,k),} $$
$${{V}_{1}} = \int {\frac{{du}}{{1 - {{\alpha }^{2}}{\text{s}}{{{\text{n}}}^{2}}u}}} = \Pi ({{\alpha }^{2}},\nu ,k),$$
$$\begin{gathered} {{V}_{2}} = \int {\frac{{du}}{{{{{(1 - {{\alpha }^{2}}{\text{s}}{{{\text{n}}}^{2}}u)}}^{2}}}}} \\ = \frac{1}{{2({{\alpha }^{2}} - 1)(k - {{\alpha }^{2}})}}\left[ {{{\alpha }^{2}}E(u) + (k - {{\alpha }^{2}}){{u}_{{_{{_{{_{{_{{_{{_{{_{{_{{_{{}}}}}}}}}}}}}}}}}}}}}} \right. \\ + (2{{\alpha }^{2}}k + 2{{\alpha }^{2}} - {{\alpha }^{4}} - 3k)\Pi ({{\alpha }^{2}},\nu ,k) \\ \left. { - \frac{{{{\alpha }^{4}}{\text{sn}}u{\text{cn}}u{\text{dn}}u}}{{1 - {{\alpha }^{2}}{\text{s}}{{{\text{n}}}^{2}}u}}} \right], \\ \end{gathered} $$

snu, cnu, and dnu are the Jacobi elliptic integrals.

It is easy to represent the integral Iϕ in the form tabulated integrals. For this purpose, let us expand Iϕ as [23]

$$\begin{gathered} {{I}_{\phi }} = \int\limits_{{{r}_{a}}}^r {\frac{{a(2rM - {{Q}^{2}} - a\lambda )}}{{\Delta \sqrt R }}dr} \\ = a\sum\limits_{i = 1}^{i = 2} {\int\limits_{{{r}_{a}}}^r {\frac{{{{K}_{i}}dr}}{{(r - {{r}_{i}})\sqrt R }}} } \\ = ga\sum\limits_{i = 1}^2 {{{\Gamma }_{i}}[(1 - \beta _{i}^{2})\Pi (\nu ,\gamma _{i}^{2},k) + \beta _{i}^{2}F(\nu ,k)],} \\ \end{gathered} $$

where

$$\gamma _{i}^{2} = \frac{{{{r}_{a}} - {{r}_{d}}}}{{{{r}_{b}} - {{r}_{d}}}}\frac{{{{r}_{i}} - {{r}_{b}}}}{{{{r}_{i}} - {{r}_{a}}}},\quad \beta _{i}^{2} = \frac{{{{r}_{i}} - {{r}_{a}}}}{{{{r}_{i}} - {{r}_{b}}}},$$
$${{r}_{i}} = M + {{( - 1)}^{{i + 1}}}\sqrt {{{M}^{2}} - {{a}^{2}} - {{Q}^{2}}} ,\quad {{\Gamma }_{i}} = \frac{{{{K}_{i}}}}{{{{r}_{a}} - {{r}_{i}}}},$$
$${{K}_{i}} = M + {{( - 1)}^{{i + 1}}}\frac{{{{M}^{2}} - {{Q}^{2}}{\text{/}}2 - a\lambda {\text{/}}2}}{{\sqrt {{{M}^{2}} - {{a}^{2}} - {{Q}^{2}}} }},$$

Similarly, let us represent the integral It in the form of tabulated integrals as

$${{I}_{t}} = \int\limits_{{{r}_{a}}}^r {\left[ {\frac{{{{A}_{1}}}}{{r - {{r}_{1}}}} - \frac{{{{A}_{2}}}}{{r - {{r}_{2}}}} + 4{{M}^{2}} - {{Q}^{2}} + 2Mr + {{r}^{2}}} \right]\frac{{dr}}{{_{{ \pm r}}\sqrt R }}} ,$$

where

$${{A}_{1}}({{r}_{1}} - {{r}_{2}}) = (2M{{r}_{1}} - {{Q}^{2}})(r_{1}^{2} + {{a}^{2}} - a\lambda ),$$
$${{A}_{2}}({{r}_{1}} - {{r}_{2}}) = - (2M{{r}_{2}} - {{Q}^{2}})(r_{2}^{2} + {{a}^{2}} - a\lambda ).$$

APPENDIX D

To calculate the visibility function, we used the following tabulated integrals. To calculate the integral (10), we used the tabulated integral

$$\int\limits_0^{2\pi } {{{e}^{{ - 2\pi iu\rho \cos ({{\phi }_{\rho }} - {{\phi }_{u}})}}}d{{\phi }_{\rho }}} = 2\pi {{J}_{0}}(2\pi u\rho ).$$

To calculate the integrals (11)–(13), we used the tabulated integrals (page 484 in [24])

$$\int\limits_0^z {t{{J}_{0}}(ut)dt = \frac{z}{u}{{J}_{1}}(uz),} $$
$$\begin{gathered} \int\limits_0^z {{{t}^{2}}{{J}_{0}}(ut)dt} \\ = \frac{z}{{2{{u}^{2}}}}[2uz{{J}_{1}}(uz) - \pi {{J}_{1}}(uz){{H}_{0}}(uz) + \pi {{J}_{0}}(uz){{H}_{1}}(uz)], \\ \end{gathered} $$
$$\begin{gathered} \int\limits_0^z {{{t}^{3}}{{J}_{0}}(ut)dt = \frac{{{{z}^{2}}}}{{{{u}^{2}}}}(2{{J}_{2}}(uz) - uz{{J}_{3}}(uz))} \\ = \frac{{{{z}^{2}}}}{{{{u}^{2}}}}[uz{{J}_{1}}(uz) - 2{{J}_{2}}(uz)] \\ = \frac{{{{z}^{2}}}}{{{{u}^{2}}}}\left[ {uz{{J}_{1}}(uz) - \frac{4}{{uz}}{{J}_{1}}(uz) + 2{{J}_{0}}(uz)} \right], \\ \end{gathered} $$

where H is the Struve function. To calculate the integral (14), we used the tabulated integral

$$\frac{{2u}}{\pi }\int\limits_0^x {t{{J}_{1}}(ut)dt = x[{{J}_{1}}(ux){{H}_{0}}(ux) - {{J}_{0}}(ux){{H}_{1}}(ux)].} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernov, S.V. Construction of Black Hole Shadows: An Analytical Theory. J. Exp. Theor. Phys. 132, 897–905 (2021). https://doi.org/10.1134/S1063776121050095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121050095

Navigation