Skip to main content
Log in

Radiative and nonradiative spontaneous decay rates for an electric quadrupole source in the vicinity of a spherical particle

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Analytic expressions for the radiative and nonradiative decay rates for an electric quadrupole source (atom, molecule) in the vicinity of a spherical particle (dielectric, metal) have been derived and analyzed within the classical electrodynamics. It has been shown that the highest increase in the decay rates appears in the quasi-static case, when the wavelength of the transition in question is much larger than the characteristic size of the system formed by the particle and the quadrupole. Asymptotic expressions for the decay rates have been derived for this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. M. Purcell, Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  2. F. V. Bunkin and A. N. Oraevskii, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 2, 181 (1959).

    Google Scholar 

  3. V. V. Klimov and V. S. Letokhov, Opt. Commun. 122, 155 (1996).

    Article  ADS  Google Scholar 

  4. V. V. Klimov and V. S. Letokhov, Phys. Rev. A 54, 4408 (1996).

    Article  ADS  Google Scholar 

  5. V. V. Klimov and M. Ducloy, Phys. Rev. A 62, 043818 (2000).

    Article  ADS  Google Scholar 

  6. V. V. Klimov and V. S. Letokhov, Comm. Mod. Phys. 2 (1), D15 (2000).

    Google Scholar 

  7. J. A. Crosse and S. Scheel, Phys. Rev. A 79, 062902 (2009).

    Article  ADS  Google Scholar 

  8. I. I. Sobel’man, Introduction to the Theory of Atomic Spectra (Fizmatlit, Moscow, 1963) [in Russian].

    Google Scholar 

  9. D. D. Dietrich, G. A. Chandler, R. J. Fortner, C. J. Hailey, and R. E. Stewart, Phys. Rev. Lett. 54, 1008 (1985).

    Article  ADS  Google Scholar 

  10. J.-C. Gauthier, J.-P. Geindre, P. Monier, E. Luc-Koenig, and J.-F. Wyart, J. Phys. B: At. Mol. Phys. 19, L385 (1986).

    Article  ADS  Google Scholar 

  11. S. K. Sekatskii, G. T. Shubeita, and G. Dietler, Opt. Commun. 188, 41 (2001).

    Article  ADS  Google Scholar 

  12. S. Tojo, M. Hasuo, and T. Fujimoto, Phys. Rev. Lett. 92, 053001 (2004).

    Article  ADS  Google Scholar 

  13. S. Tojo and M. Hasuo, Phys. Rev. A 71, 012508 (2005).

    Article  ADS  Google Scholar 

  14. V. V. Klimov, D. Bloch, M. Ducloy, and J. R. Rios Leite, Opt. Express 17, 9718 (2009).

    Article  ADS  Google Scholar 

  15. V. V. Klimov, D. Bloch, M. Ducloy, and J. R. Rios Leite, Phys. Rev. A 85, 053834 (2012).

    Article  ADS  Google Scholar 

  16. V. E. Lembessis and M. Babiker, Phys. Rev. Lett. 110, 083002 (2013).

    Article  ADS  Google Scholar 

  17. V. V. Klimov and M. Ducloy, Phys. Rev. A 72, 043809 (2005).

    Article  ADS  Google Scholar 

  18. K. Deguchi, M. Okuda, A. Iwamae, H. Nakamura, K. Sawada, and M. Hasuo, J. Phys. Soc. Jpn. 78, 024301 (2009).

    Article  ADS  Google Scholar 

  19. V. V. Klimov, M. Ducloy, and V. S. Letokhov, Phys. Rev. A 59, 2996 (1999).

    Article  ADS  Google Scholar 

  20. V. V. Klimov, V. S. Letokhov, and M. Ducloy, Laser Phys. 17, 912 (2007).

    Article  ADS  Google Scholar 

  21. S. Scheel, L. Knoll, and D.-G. Welsch, Phys. Rev. A 58, 700 (1998).

    Article  ADS  Google Scholar 

  22. S. Scheel, L. Knoll, and D.-G. Welsch, Phys. Rev. A 60, 4094 (1999).

    Article  ADS  Google Scholar 

  23. H. T. Dung, L. Knoll, and D.-G. Welsch, Phys. Rev. A 62, 053804 (2000).

    Article  ADS  Google Scholar 

  24. H. T. Dung, L. Knoll, and D.-G. Welsch, Phys. Rev. A 64, 013804 (2001).

    Article  ADS  Google Scholar 

  25. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1988, Pergamon, Oxford, 1975).

    Google Scholar 

  26. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, London, 1941).

    MATH  Google Scholar 

  27. Handbook of Mathematical Functions. With Formulas, Graphs, and Mathematical Tables Ed. by M. Abramowitz and I. Stegun (Nation. Bureau of Standards, New York, 1964, Moscow, Nauka, 1979).

  28. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1998, Mir, Moscow, 1965).

    MATH  Google Scholar 

  29. D. V. Guzatov, V. V. Klimov, and N. S. Poprukailo, J. Exp. Theor. Phys. 116, 531 (2013).

    Article  ADS  Google Scholar 

  30. L. A. Vainshtein, Electromagnetic Waves (Radio Svyaz’, Moscow, 1989) [in Russian].

    Google Scholar 

  31. V. V. Klimov and M. Ducloy, Phys. Rev. A 69, 013812 (2004).

    Article  ADS  Google Scholar 

  32. V. V. Klimov, Nanoplasmonics (Pan Stanford, Singapore, 2011, Fizmatlit, Moscow, 2009).

    Google Scholar 

  33. V. V. Klimov and V. S. Letokhov, Laser Phys. 15, 61 (2005).

    Google Scholar 

  34. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).

    Article  ADS  Google Scholar 

  35. K. Kolwas and A. Derkachova, Opto-Electron. Rev. 18, 429 (2010).

    Article  ADS  Google Scholar 

  36. R. Filter, S. Muhlig, T. Eichelkraut, C. Rockstuhl, and F. Lederer, Phys. Rev. B 86, 035404 (2012).

    Article  ADS  Google Scholar 

  37. S. Stein, Quart. Appl. Math. 19, 15 (1961).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Guzatov.

Additional information

Original Russian Text © D.V. Guzatov, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 149, No. 4, pp. 737–749.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzatov, D.V. Radiative and nonradiative spontaneous decay rates for an electric quadrupole source in the vicinity of a spherical particle. J. Exp. Theor. Phys. 122, 633–644 (2016). https://doi.org/10.1134/S1063776116040154

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116040154

Keywords

Navigation