Skip to main content
Log in

Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Ultrafast intense photoexcitation of a silicon surface is complementarily studied experimentally and theoretically, with its prompt optical dielectric function obtained by means of time-resolved optical reflection microscopy and the underlying electron-hole plasma dynamics modeled numerically, using a quantum kinetic approach. The corresponding transient surface plasmon-polariton (SPP) dispersion curves of the photo-excited material were simulated as a function of the electron-hole plasma density, using the derived optical dielectric function model, and directly mapped at several laser photon energies, measuring spatial periods of the corresponding SPP-mediated surface relief nanogratings. The unusual spectral dynamics of the surface plasmon resonance, initially increasing with the increase in the electron-hole plasma density but damped at high interband absorption losses induced by the high-density electron-hole plasma through instantaneous bandgap renormalization, was envisioned through the multi-color mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Krasavin and A. V. Zayats, Opt. Express 18, 11791 (2010).

    Article  ADS  Google Scholar 

  2. A. B. Pevtsov, D. A. Kurdyukov, V. G. Golubev, A. V. Akimov, A. A. Meluchev, A. V. Sel’kin, A. A. Kaplyanskii, D. R. Yakovlev, and M. Bayer, Phys. Rev. B: Condens. Matter 75, 153101 (2007).

    Article  ADS  Google Scholar 

  3. Y. C. Shen, P. C. Upadhya, E. H. Lin eld, H. E. Beere, and A. G. Davies, Appl. Phys. Lett. 83, 3117 (2003).

    Article  ADS  Google Scholar 

  4. A. Urbanowicz, A. Krotkus, R. Adomavi ius, and V. L. Malevich, Physica B (Amsterdam) 398, 98 (2007).

    Article  ADS  Google Scholar 

  5. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, Florida, United States, 1998).

    Google Scholar 

  6. A. D. Bristow, N. Rotenberg, and H. M. van Driel, Appl. Phys. Lett. 90, 191104 (2007).

    Article  ADS  Google Scholar 

  7. A. J. Sabbah and D. M. Riffe, Phys. Rev. B: Condens. Matter 66, 165217 (2002).

    Article  ADS  Google Scholar 

  8. K. F. Berggren and B. E. Sernelius, Phys. Rev. B: Condens. Matter 24, 1971 (1981).

    Article  ADS  Google Scholar 

  9. A. Oschlies, R. W. Godby, and R. J. Needs, Phys. Rev. B: Condens. Matter 45, 13741 (1992).

    Article  ADS  Google Scholar 

  10. C. D. Spataru, L. X. Benedict, and S. G. Louie, Phys. Rev. B: Condens. Matter 69, 205204 (2004).

    Article  ADS  Google Scholar 

  11. E. N. Glezer, Y. Siegal, L. Huang, and E. Mazur, Phys. Rev. B: Condens. Matter 51, 6959 (1995).

    Article  ADS  Google Scholar 

  12. S. I. Kudryashov and V. I. Emel’yanov, JETP 94(1), 94 (2002).

    Article  ADS  Google Scholar 

  13. S. I. Kudryashov, M. Kandyla, C. A. D. Roeser, and E. Mazur, Phys. Rev. B: Condens. Matter 75, 085207 (2007).

    Article  ADS  Google Scholar 

  14. T. Apostolova, A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, and D. V. Sinitsyn, Opt. Eng. 51, 121808 (2012).

    Article  ADS  Google Scholar 

  15. A. A. Ionin, S. I. Kudryashov, S. V. Makarov, P. N. Saltuganov, L. V. Seleznev, D. V. Sinitsyn, and A. R. Sharipov, JETP Lett. 96(6), 375 (2012).

    Article  ADS  Google Scholar 

  16. C. V. Shank, R. Yen, and C. Hirlimann, Phys. Rev. Lett. 50, 454 (1983).

    Article  ADS  Google Scholar 

  17. D. Hulin, M. Combescot, J. Bok, A. Migus, J. Y. Vinet, and A. Antonetti, Phys. Rev. Lett. 52, 1998 (1984).

    Article  ADS  Google Scholar 

  18. D. H. Reitze, T. R. Zhang, Wm. M. Wood, and M. C. Downer, J. Opt. Soc. Am. B 7, 84 (1990).

    Article  ADS  Google Scholar 

  19. K. Sokolowski-Tinten and D. von der Linde, Phys. Rev. B: Condens. Matter 61, 2643 (2000).

    Article  ADS  Google Scholar 

  20. T. Y. Choi and C. P. Grigoropoulos, J. Appl. Phys. 92, 4918 (2002).

    Article  ADS  Google Scholar 

  21. J. Bonse, Appl. Phys. A: Mater. Sci. Process. 84, 63 (2006).

    Article  ADS  Google Scholar 

  22. M. B. Agranat, S. I. Ashitkov, S. I. Anisimov, and A. V. Ovchinnikov, Appl. Phys. A: Mater. Sci. Process. 94, 879 (2009).

    Article  ADS  Google Scholar 

  23. S. A. Akhmanov, V. I. Emel’yanov, N. I. Koroteev, and V. N. Seminogov, Sov. Phys.—Usp. 28(12), 1084 (1985).

    Article  ADS  Google Scholar 

  24. E. J. Yoffa, Phys. Rev. B: Condens. Matter 21, 2415 (1980).

    Article  ADS  Google Scholar 

  25. N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, and E. E. B. Campbell, Phys. Rev. B: Condens. Matter 69, 054102 (2004).

    Article  ADS  Google Scholar 

  26. T. J. Derrien, T. Sarnet, M. Sentis, and T. E. Itina, J. Optoelectron. Adv. Mater. 12, 610 (2010).

    Google Scholar 

  27. H. M. van Driel, Phys. Rev. B: Condens. Matter 35, 8166 (1987).

    Article  ADS  MATH  Google Scholar 

  28. J. K. Chen, D. Y. Tzou, and J. E. Beraun, Int. J. Heat Mass Transfer 48, 501 (2005).

    Article  Google Scholar 

  29. T. J. Derrien, J. Krueger, T. E. Itina, S. Hoehm, A. Rosenfeld, and J. Bonse, Opt. Express 24, 29643 (2013).

    Article  ADS  Google Scholar 

  30. Y. Gan and J. K. Chen, Comput. Phys. Commun. 183, 278 (2012).

    Article  MathSciNet  ADS  Google Scholar 

  31. L. D. Pietanza, G. Colonna, S. Longo, and M. Capitelli, Eur. Phys. J. D 45, 369 (2007).

    Article  ADS  Google Scholar 

  32. N. S. Shcheblanov and T. E. Itina, Appl. Phys. A: Mater. Sci. Process. 110, 579 (2013).

    Article  ADS  Google Scholar 

  33. N. Medvedev, U. Zastrau, E. Forster, D. O. Gericke, and B. Rethfeld, Phys. Rev. Lett. 107, 165003 (2011).

    Article  ADS  Google Scholar 

  34. V. Laporta, L. D. Pietanza, and G. Colonna, Nucl. Instrum. Meth. Phys. Res., Sect. A 636, 67 (2011).

    Article  ADS  Google Scholar 

  35. S. I. Kudryashov, Proc. SPIE—Int. Soc. Opt. Eng. 5448, 1171 (2004).

    ADS  Google Scholar 

  36. R. Wagner, J. Gottmann, A. Horn, and E. W. Kreutz, Appl. Surf. Sci. 252, 8576 (2006).

    Article  ADS  Google Scholar 

  37. T. H. R. Crawford and H. K. Hagen, Appl. Surf. Sci. 253, 4970 (2007).

    Article  ADS  Google Scholar 

  38. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, ACS Nano 3, 4062 (2009).

    Article  Google Scholar 

  39. J. Bonse, A. Rosenfeld, and J. Krueger, J. Appl. Phys. 106, 104910 (2009).

    Article  ADS  Google Scholar 

  40. O. Varlamova, F. Costache, J. Reif, and M. Bestehorn, Appl. Surf. Sci. 252, 4702 (2006).

    Article  ADS  Google Scholar 

  41. A. A. Ionin, S. I. Kudryashov, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, E. V. Golosov, O. A. Golosova, Yu. R. Kolobov, and A. E. Ligachev, Quantum Electron. 41, 829 (2011).

    Article  ADS  Google Scholar 

  42. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, Berlin, 2007).

    Google Scholar 

  43. R. J. Bell, R. W. Alexander, Jr., W. F. Parks, and G. Kovener, Opt. Commun. 8, 147 (1973).

    Article  ADS  MATH  Google Scholar 

  44. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).

    Article  ADS  Google Scholar 

  45. T. Apostolova, D. Huang, P. Alsing, J. McIver, and D. A. Cardimona, Phys. Rev. B: Condens. Matter 66, 075208 (2002).

    Article  ADS  Google Scholar 

  46. A. Haug, Phys. Status Solidi B 108, 443 (1981).

    Article  ADS  Google Scholar 

  47. T. Apostolova, D. H. Huang, P. M. Alsing, and D. A. Cardimona, Phys. Rev. A: At., Mol., Opt. Phys. 71, 013810 (2005).

    Article  ADS  Google Scholar 

  48. J. H. Bechtel and W. L. Smith, Phys. Rev. B: Solid State 13, 3515 (1976).

    Article  ADS  Google Scholar 

  49. W. Lochmann, Phys. Status Solidi A 45, 423 (1978).

    Article  ADS  Google Scholar 

  50. D. B. Laks, G. F. Neumark, and S. T. Pantelides, Phys. Rev. B: Condens. Matter 42, 5176 (1990).

    Article  ADS  Google Scholar 

  51. A. Dargys and J. Kundrotas, Handbook on Physical Properties of Ge, Si, GaAs, and InP (Science and Encyclopedia Publishers, Vilnius, Lithuania, 1994).

    Google Scholar 

  52. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, Phys. Rev. B: Condens. Matter 27, 1141 (1983).

    Article  ADS  Google Scholar 

  53. J. Bonse, M. Munz, and H. Sturm, J. Appl. Phys. 97, 013538 (2005).

    Article  ADS  Google Scholar 

  54. J. Bonse and J. Krueger, J. Appl. Phys. 108, 034903 (2010).

    Article  ADS  Google Scholar 

  55. A. A. Ionin, Y. M. Klimachev, A. Y. Kozlov, S. I. Kudryashov, A. E. Ligachev, S. V. Makarov, L. V. Seleznev, D. V. Sinitsyn, A. A. Rudenko, and R. A. Khmelnitsky, Appl. Phys. B 111, 419 (2013).

    Article  ADS  Google Scholar 

  56. S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, Phys. Rev. B: Condens. Matter 79, 033409 (2009).

    Article  ADS  Google Scholar 

  57. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer-Verlag, Berlin, 2005).

    Google Scholar 

  58. R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, Phys. Rev. B: Condens. Matter 51, 11433 (1995).

    Article  ADS  Google Scholar 

  59. T. Ichibayashi, S. Tanaka, J. Kanasaki, and K. Tanimura, Phys. Rev. B: Condens. Matter 84, 235210 (2011).

    Article  ADS  Google Scholar 

  60. A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, and V. I. Emel’yanov, JETP Lett. 97(3), 121 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kudryashov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilov, P.A., Ionin, A.A., Kudryashov, S.I. et al. Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation. J. Exp. Theor. Phys. 120, 946–959 (2015). https://doi.org/10.1134/S1063776115050118

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115050118

Keywords

Navigation