Skip to main content
Log in

Equation of state of metallic helium

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The effective ion-ion interaction, free energy, pressure, and electric resistance of metallic liquid helium have been calculated in wide density and temperature ranges using perturbation theory in the electron-ion interaction potential. In the case of conduction electrons, the exchange interaction has been taken into account in the random-phase approximation and correlations have been taken into account in the local-field approximation. The solid-sphere model has been used for the nuclear subsystem. The diameter of these spheres is the only parameter of this theory. The diameter and density of the system at which the transition of helium from the singly ionized to doubly ionized state occurs have been estimated by analyzing the pair effective interaction between helium atoms. The case of doubly ionized helium atoms has been considered. Terms up to the third order of perturbation theory have been taken into account in the numerical calculations. The contribution of the third-order term is significant in all cases. The electric resistance and its temperature dependence for metallic helium are characteristic of simple divalent metals in the liquid state. The thermodynamic parameters—temperature and pressure densities-are within the ranges characteristic of the central regions of giant planets. This makes it possible to assume the existence of helium in the metallic state within the solar system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. G. Maksimov and Yu. T. Shilov, Phys.—Usp. 42(11), 1121 (1999).

    Article  ADS  Google Scholar 

  2. V. E. Fortov, Phys.—Usp. 50(4), 333 (2007).

    Article  ADS  Google Scholar 

  3. S. T. Weir, A. C. Mitchell, and W. J. Nellis, Phys. Rev. Lett. 76, 1860 (1996).

    Article  ADS  Google Scholar 

  4. V. E. Fortov, V. Ya. Ternovoi, S. V. Kvitov, V. B. Mintsev, D. N. Nikolaev, A. A. Pyalling, and A. S. Filimonov, JETP Lett. 69(12), 926 (1999).

    Article  ADS  Google Scholar 

  5. V. Ya. Ternovoi, A. S. Filimonov, V. E. Fortov, S. V. Kvitov, D. N. Nikolaev, and A. A. Pyaling, Physica B (Amsterdam) 265, 6 (1999).

    ADS  Google Scholar 

  6. M. Bastea, A. C. Mitchell, and W. J. Nellis, Phys. Rev. Lett. 86, 3108 (2001).

    Article  ADS  Google Scholar 

  7. R. Chau, A. C. Mitchell, R. W. Minich, and W. J. Nellis, Phys. Rev. Lett. 90, 245501 (2003).

    Article  ADS  Google Scholar 

  8. D. A. Young, A. K. McMahan, and M. Ross, Phys. Rev. B: Condens. Matter 24, 5119 (1981).

    Article  ADS  Google Scholar 

  9. A. Kietzmann, B. Holst, R. Redmer, M. P Desjarfais, and T. R. Mattsson, Phys. Rev. Lett. 98, 190602 (2007).

    Article  ADS  Google Scholar 

  10. S. A. Kharallah and B. Militzer, Phys. Rev. Lett. 101, 106407 (2008).

    Article  ADS  Google Scholar 

  11. L. Stixrude and R. Jeanloz, Proc. Natl. Acad. Sci. USA 105, 11071 (2008).

    Article  ADS  Google Scholar 

  12. E. G. Brovman, Yu. M. Kagan, and A. Holas, Sov. Phys. JETP 34, 1300 (1971).

    ADS  Google Scholar 

  13. E. G. Brovman and Yu. M. Kagan, Sov. Phys.—Usp. 17(2), 125 (1974).

    Article  ADS  Google Scholar 

  14. D. J. Stevenson and N. W. Ashcroft, Phys. Rev. A: At., Mol., Opt. Phys. 9, 782 (1974).

    Article  ADS  Google Scholar 

  15. B. T. Shvets, JETP 104(4), 655 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  16. W. A. Harrison, Pseudopotentials in the Theory of Metals (W. A. Benjamin, New York, 1966; Mir, Moscow, 1968).

    Google Scholar 

  17. V. T. Shvets, Method of Green’s Functions in the Theory of Metals (Latstar, Odessa, Ukraine, 2002) [in Russiaan].

    Google Scholar 

  18. I. A. Vakarchuk, Introduction to the Many-Body Problem (Lviv University, Lviv, Ukraine, 1999) [in Ukrainian].

    Google Scholar 

  19. W. H. Shih and D. Stroud, Phys. Rev. B: Condens. Matter 31, 3715 (1985).

    Article  ADS  Google Scholar 

  20. P. Lloyd and C. A. Shall, J. Phys. C: Solid State Phys. 1, 1620 (1968).

    Article  ADS  Google Scholar 

  21. E. G. Brovman and Yu. Kagan, Sov. Phys. JETP 36(5), 1025 (1972).

    MathSciNet  ADS  Google Scholar 

  22. E. G. Brovman and A. Holas, Sov. Phys. JETP 39, 924 (1974).

    ADS  Google Scholar 

  23. J. Hammerberg and N. W. Ashcroft, Phys. Rev. B: Solid State 9, 3999 (1974).

    Article  Google Scholar 

  24. L. Ballentine and V. Heine, Philos. Mag. 9, 617 (1964).

    Article  ADS  Google Scholar 

  25. D. J. M. Geldart and S. H. Vosko, Can. J. Phys. 44, 2137 (1966).

    Article  ADS  Google Scholar 

  26. V. T. Shvets and E. V. Belov, Acta Phys. Pol., A 96, 741 (1999).

    Google Scholar 

  27. V. T. Shvets, Phys. Met. Metallogr. 89(3), 211 (2000).

    Google Scholar 

  28. I. R. Yukhnovskii and M. F Golovko, Statistical Theory of Classical Equilibrium Systems (Naukova Dumka, Kiev, 1987) [in Russian].

    Google Scholar 

  29. V. T. Shvets, S. V. Savenko, and Ye. K. Malinovskiy, Condens. Matter Phys. 9, 1 (2006).

    Google Scholar 

  30. S. D. Kaim, N. P. Kovalenko, and E. V. Vasiliu, J. Phys. Studies 1, 589 (1997).

    ADS  Google Scholar 

  31. B. T. Shvets, JETP Lett. 95(1), 29 (2012).

    Article  ADS  Google Scholar 

  32. B. B. Kechin, JETP Lett. 79(1), 40 (2004).

    Article  ADS  Google Scholar 

  33. V. T. Shvets, T. V. Shvets, and Ya. Ye. Rachynskiy, Ukr. J. Phys. 55, 251 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. T. Shvets.

Additional information

Original Russian Text © V.T. Shvets, 2013, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 143, No. 1, pp. 182–190.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shvets, V.T. Equation of state of metallic helium. J. Exp. Theor. Phys. 116, 159–165 (2013). https://doi.org/10.1134/S1063776113010159

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776113010159

Keywords

Navigation