Skip to main content
Log in

Stability analysis of a Morris-Thorne-Bronnikov-Ellis wormhole with pressure

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The model of a spherical Morris-Thorne-Bronnikov-Ellis wormhole is analyzed for stability. The matter of this wormhole is composed of a radial monopole magnetic field and a quasi-perfect phantom fluid. In the stationary case, the energy density of this fluid is negative and equal in magnitude to twice the energy density of the magnetic field. There is no pressure of this fluid in the stationary case (phantom dust), while in the case where the fluid energy density deviates from its stationary value, the pressure is proportional to the deviation of the energy density from its stationary value. An example of a wormhole stable against radial perturbations has been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Armendariz-Picon, arXiv:gr-qc/0201027.

  2. C. Armendariz-Picon, Phys. Rev. D: Part. Fields 65, 104010 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  3. H. Shinkai and S. A. Hayward, arXiv:gr-qc/0205041.

  4. J. A. Gonzalez, F. S. Guzman, and O. Sarbach, arXiv:gr-qc/0806.1370.

  5. J. A. Gonzalez, F. S. Guzman, and O. Sarbach, arXiv:gr-qc/0806.0608.

  6. A. Doroshkevich, J. Hansen, I. Novikov, and A. Shatskiy, arXiv:gr-qc/0812.0702.

  7. A. Doroshkevich, J. Hansen, I. Novikov, and A. Shatskiy, Int. J. Mod. Phys. D 18, 1665 (2009).

    Article  ADS  MATH  Google Scholar 

  8. D. Novikov, A. Doroshkevich, I. Novikov, and A. Shatskii, Astron. Rep. 53(12), 1079 (2009).

    Article  ADS  Google Scholar 

  9. O. Sarbach and T. Zannias, Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 81, 047502 (2010).

    Article  Google Scholar 

  10. M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  11. K. A. Bronnikov, Acta Phys. Pol., B 4, 251 (1973).

    MathSciNet  Google Scholar 

  12. H. G. Ellis, J. Math. Phys. 14, 104 (1973).

    Article  ADS  Google Scholar 

  13. K. A. Bronnikov, J. C. Fabris, and A. Zhidenko, arXiv:1109.6576.

  14. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1988; Butterworth-Heinemann, Oxford, 1989).

    Google Scholar 

  15. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989; Butterworth-Heinemann, Oxford, 1991).

    Google Scholar 

  16. K. A. Bronnikov and S. G. Rubin, Lectures on Gravitation and Cosmology (Moscow Engineering Physics Institute, Moscow, 2008) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Novikov.

Additional information

Original Russian Text © I.D. Novikov, A.A. Shatskiy, 2012, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 141, No. 5, pp. 919–923.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novikov, I.D., Shatskiy, A.A. Stability analysis of a Morris-Thorne-Bronnikov-Ellis wormhole with pressure. J. Exp. Theor. Phys. 114, 801–804 (2012). https://doi.org/10.1134/S1063776112040127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776112040127

Keywords

Navigation