Skip to main content
Log in

Andreev spectroscopy of FeSe: Evidence for two-gap superconductivity

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Current-voltage characteristics (CVCs) of Andreev superconductor-constriction-superconductor (ScS) contacts in polycrystalline samples of FeSe with the critical temperature T C = (12 ± 1) K have been measured using the break-junction technique. In Sharvin-type nanocontacts, two sets of subharmonic gap structures were detected due to multiple Andreev reflections, indicating the existence of two nodeless superconducting gaps Δ L = (2.75 ± 0.3) meV and Δ S = (0.8 ± 0.2) meV. Well-shaped CVCs for stacks of Andreev contacts with up to five contacts were observed due to the layered structure of FeSe (the intrinsic multiple Andreev reflections effect). An additional fine structure in the CVCs of Andreev ScS nanocontacts is attributed to the existence of a Leggett mode. A linear relation between the superconducting gap Δ L and the magnetic resonance energy E magres ≈ 2Δ L is found to be valid for layered iron pnictides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Ivanovskii, Phys.—Usp. 51(12), 1229 (2008); Yu. A. Izyumov and E. Z. Kurmaev, Phys.—Usp. 51 (12), 1261 (2008); M. V. Sadovskii, Phys.—Usp. 51 (12), 1201 (2008).

    Article  ADS  Google Scholar 

  2. D. C. Johnston, Adv. Phys. 59, 803 (2010).

    Article  ADS  Google Scholar 

  3. F.-C. Hsu, J.-Y. Luo, K.-W. Yeh, T.-K. Chen, T.-W. Huang, P. M. Wu, Y.-C. Lee, Y.-L. Huang, Y.-Y. Chu, D.-C. Yan, and M.-K. Wu, Proc. Natl. Acad. Sci. USA 105, 14262 (2008).

    Article  ADS  Google Scholar 

  4. S. Margadonna, Y. Takabayashi, M. T. McDonald, K. Kasperkiewicz, Y. Mizuguchi, Y. Takano, A. N. Fitch, E. Suard, and K. Prassides, Chem. Commun. (Cambridge), No. 43, 5607 (2008).

  5. S. Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayama, T. Nakagawa, M. Takata, and K. Prassides, Phys. Rev. B: Condens. Matter 80, 064506 (2009).

    Article  ADS  Google Scholar 

  6. S. Medvedev, T. M. McQueen, I. A. Troyan, T. Palasyuk, M. I. Eremets, R. J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann, and C. Felser, Nat. Mater. 8, 630 (2009).

    Article  ADS  Google Scholar 

  7. Y. F. Nie, E. Brahimi, J. I. Budnick, W. A. Hines, M. Jain, and B. O. Wells, Appl. Phys. Lett. 94, 242505 (2009).

    Article  ADS  Google Scholar 

  8. A. J. Williams, T. M. McQueen, V. Ksenofontov, C. Felser, and R. J. Cava, J. Phys.: Condens. Matter 21, 305701 (2009).

    Article  Google Scholar 

  9. T. M. McQueen, Q. Huang, V. Ksenofontov, C. Felser, Q. Xu, H. Zandbergen, Y. S. Hor, J. Allred, A. J. Williams, D. Qu, J. Checkelsky, N. P. Ong, and R. J. Cava, Phys. Rev. B: Condens. Matter 79, 014522 (2009).

    Article  ADS  Google Scholar 

  10. M. Bendele, A. Amato, K. Conder, M. Elender, H. Keller, H.-H. Klauss, H. Luetkens, E. Pomjakushina, A. Raselli, and R. Khasanov, Phys. Rev. Lett. 104, 087003 (2010).

    Article  ADS  Google Scholar 

  11. Chen Fang, B. A. Bernevig, and Jiangping Hu, EPL 86, 67005 (2009).

    Article  ADS  Google Scholar 

  12. M. Johannes, Physics 1, 28 (2008).

    Article  Google Scholar 

  13. A. Subedi, L. Zhang, D. J. Singh, and M. H. Du, Phys. Rev. B: Condens. Matter 78, 134514 (2008).

    Article  ADS  Google Scholar 

  14. V. A. Moskalenko, Fiz. Met. Metalloved. 8(4), 503 (1959).

    Google Scholar 

  15. H. Suhl, B. T. Matthias, and L. R. Walker, Phys. Rev. Lett. 3(12), 552 (1959).

    Article  ADS  MATH  Google Scholar 

  16. V. Z. Kresin and S. A. Wolf, Phys. Rev. B: Condens. Matter 46, 6458 (1992).

    Article  ADS  Google Scholar 

  17. S. D. Adrian, S. A. Wolf, O. Dolgov, S. Shulga, and V. Z. Kresin, Phys. Rev. B: Condens. Matter 56, 7878 (1997).

    Article  ADS  Google Scholar 

  18. N. Klein, N. Tellmann, H. Schulz, K. Urban, S. A. Wolf, and V. Z. Kresin, Phys. Rev. Lett. 71, 3355 (1993).

    Article  ADS  Google Scholar 

  19. B. A. Aminov, M. A. Hein, G. Müller, H. Piel, D. Wehler, Ya. G. Ponomarev, K. Rosner, and K. Winzer, J. Supercond. 7, 361 (1994).

    Article  ADS  Google Scholar 

  20. Ya. G. Ponomarev, Physica C (Amsterdam) 243, 167 (1995).

    Article  ADS  Google Scholar 

  21. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature (London) 410, 63 (2001).

    Article  ADS  Google Scholar 

  22. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).

    Article  Google Scholar 

  23. X. X. Xi, Rep. Prog. Phys. 71, 116501 (2008).

    Article  ADS  Google Scholar 

  24. R. Khasanov, K. Conder, E. Pomjakushina, A. Amato, C. Baines, Z. Bukowski, J. Karpinski, S. Katrych, H.-H. Klauss, H. Luetkens, A. Shengelaya, and N. D. Zhigadlo, Phys. Rev. B: Condens. Matter 78, 220510 (2008).

    Article  ADS  Google Scholar 

  25. J. K. Dong, T. Y. Guan, S. Y. Zhou, X. Qiu, L. Ding, C. Zhang, U. Patel, Z. L. Xiao, and S. Y. Li, Phys. Rev. B: Condens. Matter 80, 024518 (2009).

    Article  ADS  Google Scholar 

  26. A. J. Leggett, Prog. Theor. Phys. 36, 901 (1966).

    Article  ADS  Google Scholar 

  27. Ya. G. Ponomarev, S. A. Kuzmichev, M. G. Mikheev, M. V. Sudakova, S. N. Tchesnokov, N. Z. Timergaleev, A. V. Yarigin, E. G. Maksimov, S. I. Krasnosvobodtsev, A. V. Varlashkin, M. A. Hein, G. Müller, H. Piel, L. G. Sevastyanova, O. V. Kravchenko, K. P. Burdina, and B. M. Bulychev, Solid State Commun. 129, 85 (2004); Ya. G. Ponomarev, S. A. Kuzmichev, M. G. Mikheev, M. V. Sudakova, S. N. Tchesnokov, N. Z. Timergaleev, A. V. Yarigin, E. G. Maksimov, S. I. Krasnosvobodtsev, A. V. Varlashkin, M. A. Hein, G. Muller, H. Piel, L. G. Sevastyanova, O. V. Kravchenko, K. P. Burdina, and B. M. Bulychev, arXiv:condmat//0303640.

    Article  ADS  Google Scholar 

  28. Ya. G. Ponomarev, S. A. Kuzmichev, M. G. Mikheev, M. V. Sudakova, S. N. Tchesnokov, Hoang Hoai Van, B. M. Bulychev, E. G. Maksimov, and S. I. Krasnosvobodtsev, JETP Lett. 85(1), 46 (2007).

    Article  ADS  Google Scholar 

  29. A. E. Karakozov, E. G. Maksimov, and Ya. G. Ponomarev, JETP Lett. 91(1), 24 (2010).

    Article  ADS  Google Scholar 

  30. G. Blumberg, A. Mialitsin, B. S. Dennis, M. V. Klein, N. D. Zhigadlo, and J. Karpinski, Phys. Rev. Lett. 99, 227002 (2007).

    Article  ADS  Google Scholar 

  31. F. J. Burnell, J. Hu, M. M. Parish, and B. A. Bernevig, Phys. Rev. B 82, 144506 (2010).

    Article  ADS  Google Scholar 

  32. R. Kleiner and P. Müller, Physica C (Amsterdam) 293, 156 (1997).

    Article  ADS  Google Scholar 

  33. H. Nakamura, M. Machida, T. Koyama, and N. Hamada, J. Phys. Soc. Jpn. 78, 123712 (2009).

    Article  ADS  Google Scholar 

  34. T. Koyama, Y. Ota, and M. Machida, Physica C (Amsterdam) 470, 1481 (2010).

    Article  ADS  Google Scholar 

  35. Yu. Koval, P. Mueller, G. Behr, and B. Buechner, in Proceedings of the 2009 APS March Meeting, Pittsburgh, Pennsylvania, United States, March 16–20, 2009 (Pittsburgh, 2009), P35.003.

  36. Yi Yin, M. Zech, T. L. Williams, and J. E. Hoffman, Physica C (Amsterdam) 469, 535 (2009).

    Article  ADS  Google Scholar 

  37. D. Daghero, and R. S. Gonnelli, Supercond. Sci. Technol. 23, 043001 (2010).

    Article  ADS  Google Scholar 

  38. T. Y. Chen, S. X. Huang, Z. Tesanovic, R. H. Liu, X. H. Chen, and C. L. Chien, Physica C (Amsterdam) 469, 521 (2009).

    Article  ADS  Google Scholar 

  39. R. S. Gonnelli, D. Daghero, M. Tortello, G. A. Ummarino, V. A. Stepanov, R. K. Kremer, J. S. Kim, N. D. Zhigadlo, and J. Karpinski, Physica C (Amsterdam) 469, 512 (2009).

    Article  ADS  Google Scholar 

  40. P. Samuely, Z. Pribulová, P. Szabó, G. Pristá[sign: inverted circumflex]s, S. L. Bud’ko, and P. C. Canfield, Physica C (Amsterdam) 469, 507 (2009).

    Article  ADS  Google Scholar 

  41. Ya. G. Ponomarev, S. A. Kuzmichev, M. G. Mikheev, M. V. Sudakova, S. N. Tchesnokov, O. S. Volkova, A. N. Vasiliev, T. Hänke, C. Hess, G. Behr, R. Klin- geler, and B. Büchner, Phys. Rev. B: Condens. Matter 79, 224517 (2009).

    Article  ADS  Google Scholar 

  42. Yu. V. Sharvin, Sov. Phys. JETP 21, 655 (1965).

    ADS  Google Scholar 

  43. T. Kamimura, J. Phys. Soc. Jpn. 43, 1594 (1977); H. Ikeda, M. Shirai, N. Suzuki, and K. Motizuki, J. Magn. Magn. Mater 140–144, 159 (1995).

    Article  ADS  Google Scholar 

  44. C. J. Muller, J. M. van Ruitenbeek, and L. J. de Jongh, Physica C (Amsterdam) 191, 485 (1992).

    Article  ADS  Google Scholar 

  45. R. Kümmel, U. Gunsenheimer, and R. Nicolsky, Phys. Rev. B: Condens. Matter 42, 3992 (1990).

    Article  ADS  Google Scholar 

  46. G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B: Condens. Matter 25, 4515 (1982); M. Octavio, M. Tinkham, G. E. Blonder, and T. M. Klapwijk, Phys. Rev. B: Condens. Matter 27, 6739 (1983); K. Flensberg, J. B. Hansen, and M. Octavio, Phys. Rev. B: Condens. Matter 38, 8707 (1988).

    Article  ADS  Google Scholar 

  47. A. Poenicke, J. C. Cuevas, and M. Fogelström, Phys. Rev. B: Condens. Matter 65, 220510 (2002).

    Article  ADS  Google Scholar 

  48. Ya. G. Ponomarev, Kim Ki Uk, M. A. Lorenz, et al., Inst. Phys. Conf. Ser. 167, 241 (2000); Ya. G. Ponomarev, M. Mikheev, M. Sudakova, S. Tchesnokov, and S. Kuzmichev, Phys. Status Solidi C 6, 2072 (2009).

    Google Scholar 

  49. H. Schmidt, M. A. Lorenz, G. Muller, H. Schmidt, M. A. Lorenz, G. Muller, H. Piel, Kim Ki Uk, Ya. G. Ponomarev, N. Z. Timergaleev, K. Winzer, Ch. Janowitz, A. Krapf, R. Manzke, and T. E. Os’kina, in Abstracts of the Sixth International Conference “Materials and Mechanisms of Superconductivity and High-Temperature Superconductors (M2S-HTSC-VI),” Houston, Texas, United States, February 20–25, 2000 (Houston, 2000), 2C2.6, p. 170.

  50. T. Katase, H. Hiramatsu, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, arXiv:0907.0666.

  51. M. Hurd, S. Datta, and P. F. Bagwell, Phys. Rev. B: Condens. Matter 54, 6557 (1996).

    Article  ADS  Google Scholar 

  52. R. Khasanov, M. Bendele, A. Amato, K. Conder, H. Keller, H.-H. Klauss, H. Luetkens, and E. Pomjakush- ina, Phys. Rev. Lett. 104, 087004 (2010).

    Article  ADS  Google Scholar 

  53. T. P. Devereaux and P. Fulde, Phys. Rev. B: Condens. Matter 47, 14638 (1993).

    Article  ADS  Google Scholar 

  54. M. Eschrig, Adv. Phys. 55, 47 (2006).

    Article  ADS  Google Scholar 

  55. T. A. Maier and D. J. Scalapino, Phys. Rev. B: Condens. Matter 78, 020514 (2008).

    Article  ADS  Google Scholar 

  56. G. Yu, Y. Li, E. M. Motoyama, and M. Greven, Nat. Phys. 5, 873 (2009).

    Article  Google Scholar 

  57. S. Onari, H. Kontani, and M. Sato, Phys. Rev. B: Condens. Matter 81, 060504 (2010).

    Article  ADS  Google Scholar 

  58. Shin-ichi Shamoto, M. Ishikado, A. D. Christianson, M. D. Lumsden, S. Wakimoto, K. Kodama, A. Iyo, and M. Arai, Phys. Rev. B 82, 172508 (2010).

    Article  ADS  Google Scholar 

  59. H. Fukazawa, J. Phys. Soc. Jpn. 78, 083712 (2009).

    Article  ADS  Google Scholar 

  60. P. K. Biswas, G. Balakrishnan, D. M. Paul, C. V. Tomy, M. R. Lees, and A. D. Hillier, Phys. Rev. B: Condens. Matter 81, 092510 (2010).

    Article  ADS  Google Scholar 

  61. K. Sasmal, B. Lv, Z. Tang, F. Y. Wei, Y. Y. Xue, A. M. Guloy, and C. W. Chu, Phys. Rev. B: Condens. Matter 81, 144512 (2010).

    Article  ADS  Google Scholar 

  62. M. Yashima, H. Nishimura, H. Mukuda, Y. Kitaoka, K. Miyazawa, P. M. Shirage, K. Kihou, H. Kito, H. Eisaki, and A. Iyo, J. Phys. Soc. Jpn. 78, 103702 (2009).

    Article  ADS  Google Scholar 

  63. Y. Imai, H. Takahashi, K. Kitagawa, K. Matsubayashi, N. Nakai, Y. Nagai, Y. Uwatoko, M. Machida, and A. Maeda, J. Phys. Soc. Jpn. 80, 013704 (2011).

    Article  ADS  Google Scholar 

  64. T. Kato, Y. Mizuguchi, H. Nakamura, T. Machida, H. Sakata, and Y. Takano, Phys. Rev. B: Condens. Matter 80, 180507(R) (2009).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Vasiliev.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponomarev, Y.G., Kuzmichev, S.A., Mikheev, M.G. et al. Andreev spectroscopy of FeSe: Evidence for two-gap superconductivity. J. Exp. Theor. Phys. 113, 459–467 (2011). https://doi.org/10.1134/S1063776111080097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776111080097

Keywords

Navigation