Skip to main content
Log in

Role of magnetism in the formation of a short-range order in iron-silicon alloys

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The formation of a short-range order in soft magnetic Fe-Si alloys depending on the annealing temperature has been investigated theoretically and experimentally. The B2-type short-range order has been observed in samples quenched from temperatures T > T C (where T C is the Curie temperature) with the content c Si close to the boundary of the two-phase region. Annealing at temperatures T < T C for the content c Si ≥ 0.08 leads to an increase in the fraction of regions with the D03-type short-range order. The mechanism of the formation of the short-range order in Fe-Si solid solutions has been analyzed by the Monte Carlo simulation with the ab initio calculated interatomic interaction parameters. It has been shown that the energy of the effective Si-Si interaction in bcc iron strongly depends on the magnetic state of the matrix. As a result, the B2-type short-range order is formed at T > T C and is fixed at quenching, whereas the D03-type shortrange order is equilibrium in the ferromagnetic state. The results reveal the decisive role of magnetism in the formation of the short-range order in Fe-Si alloys and allow the explanation of the observed structural features of the alloys depending on the composition and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. M. Bozorth, Ferromagnetism (Van Nostrand, New York, 1951; Inostrannaya Literatura, Moscow, 1956).

    Google Scholar 

  2. Y. Yoshizawa, S. Oguma, and K. Yamauchi, J. Appl. Phys. 64, 6044 (1988).

    Article  ADS  Google Scholar 

  3. G. Herzer, J. Magn. Magn. Mater. 112, 258 (1992).

    Article  ADS  Google Scholar 

  4. L. Neel, J. Phys. Radium 15, 225 (1954).

    Article  MATH  Google Scholar 

  5. S. Taniguchi and M. Yamamoto, Sci. Rep. Res. Inst., Tohoku Univ., Ser. A 6, 330 (1954).

    Google Scholar 

  6. D. Mainhardt and O. Krisement, Arch. Eisenhüttenwesen 36, 293 (1965).

    Google Scholar 

  7. Yu. P. Chernenkov, V. I. Fedorov, V. A. Lukshina, B. K. Sokolov, and N. V. Ershov, Fiz. Met. Metalloved. 92(2), 95 (2001) [Phys. Met. Metallogr. 92 (2), 193 (2001)].

    Google Scholar 

  8. Yu. P. Chernenkov, V. I. Fedorov, V. A. Lukshina, B. K. Sokolov, and N. V. Ershov, J. Magn. Magn. Mater. 254–255, 346 (2003).

    Article  Google Scholar 

  9. N. V. Ershov, V. A. Lukshina, B. K. Sokolov, Yu. P. Chernenkov, and V. I. Fedorov, Physica B (Amsterdam) 372, 152 (2006).

    Article  ADS  Google Scholar 

  10. A. R. Kuznetsov, Yu. N. Gornostyrev, N. V. Ershov, V. A. Lukshina, Yu. P. Chernenkov, and V. I. Fedorov, Fiz. Tverd. Tela (St. Petersburg) 49(12), 2184 (2007) [Phys. Solid State 49 (12), 2280 (2007)].

    Google Scholar 

  11. O. Kubaschewski, Phase Diagrams of Binary Fe-Based Systems (Springer, Berlin, 1982), p. 135.

    Google Scholar 

  12. Y. Ustinovshikov and I. Sapegina, J. Mater. Sci. 39, 1007 (2004).

    Article  ADS  Google Scholar 

  13. K. Hilfrich, W. Kölker, W. Petry, O. Schärpf, and E. Nembach, Z. Metallkd. 84, 255 (1993).

    Google Scholar 

  14. K. Hilfrich, W. Kölker, W. Petry, O. Schärpf, and E. Nembach, Acta Metall. Mater. 42, 743 (1994).

    Article  Google Scholar 

  15. D. Ruiza, T. Ros-Yanez, L. Vandenbossche, L. Dupre, R. E. Vandenberghe, and Y. Houbaer, J. Magn. Magn. Mater. 290–291, 1423 (2005).

    Article  Google Scholar 

  16. N. V. Ershov, N. M. Kleinerman, V. A. Lukshina, V. P. Pilyugin, and V. V. Serikov, Fiz. Tverd. Tela (St. Petersburg) 51(6), 1165 (2009) [Phys. Solid State 51 (6), 1236 (2009)].

    Google Scholar 

  17. N. V. Ershov, Yu. P. Chernenkov, V. A. Lukshina, and V. I. Fedorov, Fiz. Tverd. Tela (St. Petersburg) 51(3), 417 (2009) [Phys. Solid State 51 (3), 441 (2009)].

    Google Scholar 

  18. A. G. Khachaturyan, Theory of Structural Transformation in Solids (Nauka, Moscow, 1974; Wiley, New York 1983).

    Google Scholar 

  19. J. Kudrnovsky, N. E. Christensen, and O. K. Andersen, Phys. Rev. B: Condens. Matter 43, 5924 (1991).

    Article  ADS  Google Scholar 

  20. E. G. Moroni, W. Wolf, J. Hafner, and R. Podloucky, Phys. Rev. B: Condens. Matter 59, 12 860 (1999).

    Article  Google Scholar 

  21. N. I. Kulikov, D. Fristot, J. Hugel, and A. V. Postnikov, Phys. Rev. B: Condens. Matter 66, 014206 (2002).

    Article  ADS  Google Scholar 

  22. A. K. Arzhnikov and L. V. Dobysheva, Phys. Rev. B: Condens. Matter 62, 5324 (2000).

    Article  ADS  Google Scholar 

  23. N. V. Ershov, A. K. Arzhnikov, L. V. Dobysheva, Yu. P. Chernenkov, V. I. Fedorov, and V. A. Lukshina, Fiz. Tverd. Tela (St. Petersburg) 49(1), 64 (2007) [Phys. Solid State 49 (1), 67 (2007)].

    Google Scholar 

  24. Binary Alloy Phase Diagrams, Ed. by T. B. Massalski (American Society for Metals International, Metals Park, Ohio, United States, 1990), Vol. 2, p. 1792.

    Google Scholar 

  25. S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971; Wiley, New York, 1974).

    Google Scholar 

  26. Yu. P. Chernenkov, V. I. Fedorov, V. A. Lukshina, B. K. Sokolov, and N. V. Ershov, Fiz. Met. Metalloved. 100(3), 39 (2005) [Phys. Met. Metallogr. 100 (3), 235 (2005)].

    Google Scholar 

  27. B. E. Warren, X-ray Diffraction (Addison-Wesley, New York, 1969).

    Google Scholar 

  28. V. V. Serikov, N. M. Kleinerman, V. A. Lukshina, and N. V. Ershov, Fiz. Tverd. Tela (St. Petersburg) 52(2), 316 (2010) [Phys. Solid State 52 (2), 339 (2010)].

    Google Scholar 

  29. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964); W. Kohn and L. J. Sham, Phys. Rev. A: At., Mol., Opt. Phys. 140, 1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  30. P. Soven, Phys. Rev. 156, 809 (1967); D. W. Taylor, Phys. Rev. 156, 1017 (1967); S. Kirkpatrick, B. Velicky, and H. Erenreich, Phys. Rev. B: Solid State 1, 3250 (1970).

    Article  ADS  Google Scholar 

  31. J. Korringa, Physica (Amsterdam) 13, 392 (1947); W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).

    Article  MathSciNet  ADS  Google Scholar 

  32. B. L. Gyorffy and G. M. Stocks, in Electrons in Disordered Metals and at Metallic Surfaces, Ed. by P. Phariseau, B. L. Gyorffy, and L. Scheire (Plenum, New York, 1978); D. D. Johnson, D. M. Nicholson, F. J. Pinski, B. L. Gyorffy, and G. M. Stocks, Phys. Rev. Lett. 56, 2088 (1986); D. D. Johnson, D. M. Nicholson, F. J. Pinski, B. L. Gyorffy, and G. M. Stocks, Phys. Rev. B: Condens. Matter 41, 9701 (1990).

    Google Scholar 

  33. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  34. H. L. Skriver and N. M. Rosengaard, Phys. Rev. B: Condens. Matter 43, 9538 (1991).

    Article  ADS  Google Scholar 

  35. A. V. Ruban and I. A. Abrikosov, Rep. Prog. Phys. 71, 046501 (2008).

    Article  ADS  Google Scholar 

  36. A. V. Ruban, S. Shallcross, S. I. Simak, and H. L. Skriver, Phys. Rev. B: Condens. Matter 70, 125115 (2004).

    Article  ADS  Google Scholar 

  37. F. Ducastelle and F. Gautier, J. Phys. F.: Met. Phys. 6, 2039 (1976); P. E. A. Turchi, G. M. Stocks, W. H. Butler, D. M. Nicholson, and A. Gonis, Phys. Rev. B: Condens. Matter 37, 5982 (1988); P. P. Singh and A. Gonis, Phys. Rev. B: Condens. Matter 47, 6744 (1993).

    Article  ADS  Google Scholar 

  38. A. V. Ruban and H. L. Skriver, Phys. Rev. B: Condens. Matter 66, 024201 (2002); A. V. Ruban, S. I. Simak, P. A. Korzhavyi, and H. L. Skriver, Phys. Rev. B: Condens. Matter 66, 024202 (2002).

    Article  ADS  Google Scholar 

  39. I. A. Abrikosov, A. M. N. Niklasson, S. I. Simak, B. Johansson, A. V. Ruban, and H. L. Skriver, Phys. Rev. Lett. 76, 4203 (1996); I. A. Abrikosov, S. I. Simak, B. Johansson, A. V. Ruban, and H. L. Skriver, Phys. Rev. B: Condens. Matter 56, 9319 (1997).

    Article  ADS  Google Scholar 

  40. B. L. Gyorffy, A. J. Pindor, J. B. Stauton, G. M. Stocks, and H. Winter, J. Phys. F: Met. Phys. 15, 1337 (1985); J. B. Stauton and B. L. Gyorffy, Phys. Rev. Lett. 69, 371 (1992).

    Article  ADS  Google Scholar 

  41. P. T. Blochl, Phys. Rev. B: Condens. Matter 50, 17953 (1994).

    Article  ADS  Google Scholar 

  42. G. Kresse and J. Furthmüller, Phys. Rev. B: Condens. Matter 54, 11169 (1996).

    Article  ADS  Google Scholar 

  43. G. Kresse and J. Hafner, J. Phys.: Condens. Matter 6, 8245 (1994).

    Article  ADS  Google Scholar 

  44. G. Kresse and J. Joubert, Phys. Rev. B: Condens. Matter 59, 1758 (1999).

    Article  ADS  Google Scholar 

  45. S. H. Vosko, L. Wilk, and M. Nusair, Canad. J. Phys. 58, 1200 (1980).

    Article  ADS  Google Scholar 

  46. K. Binder, Applications of the Monte Carlo Method in Statistical Physics (Springer, Berlin, 1984).

    Book  MATH  Google Scholar 

  47. J. M. Cowley, Phys. Rev. 77, 669 (1950); J. M. Cowley, Phys. Rev. 120, 1648 (1960).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Lukshina.

Additional information

Original Russian Text © O.I. Gorbatov, A.R. Kuznetsov, Yu.N. Gornostyrev, A.V. Ruban, N.V. Ershov, V.A. Lukshina, Yu.P. Chernenkov, V.I. Fedorov, 2011, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 139, No. 5, pp. 969–982.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorbatov, O.I., Kuznetsov, A.R., Gornostyrev, Y.N. et al. Role of magnetism in the formation of a short-range order in iron-silicon alloys. J. Exp. Theor. Phys. 112, 848–859 (2011). https://doi.org/10.1134/S1063776111040066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776111040066

Keywords

Navigation