Skip to main content
Log in

Thermal, transport, and magnetotransport properties of free charge carriers in Mn-doped structures with a GaAs/InGaAs/GaAs quantum well

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The results of investigation of the magnetic and transport properties of a GaAs/InGaAs/GaAs quantum well delta-doped with carbon and manganese from different sides and containing a ferromagnetic phase are analyzed. A thermodynamic model is formulated and the composition of a system consisting of neutral Mn atoms, Mn ions, and holes in the quantum well is calculated for determining the concentration of free charge carriers. The contributions to the resistance from different mechanisms of hole scattering are calculated, and good agreement with the experimental temperature dependences of the resistance is attained. The calculated and experimental values of the negative magnetoresistance associated with variation in the contribution of scattering from magnetic ions of the spin-polarized system of charge carriers are found to be in quantitative agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Bratkovsky, Rep. Prog. Phys. 71, 1 (2008).

    Article  Google Scholar 

  2. T. Jungwirth, J. Sinova, J. Mašek, J. Kučera, and A. H. MacDonald, Rev. Mod. Phys. 78, 809 (2006).

    Article  ADS  Google Scholar 

  3. I. Žutič, O. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).

    Article  ADS  Google Scholar 

  4. V. A. Ivanov, T. G. Aminov, V. M. Novotvortsev, and V. T. Kalinnikov, Izv. Akad. Nauk, Ser. Khim., No. 11, 2255 (2004) [Russ. Chem. Bull. 53 (11), 2357 (2004)].

  5. V. A. Kulbachinskii, P. V. Gurin, P. M. Tarasov, A. B. Davydov, Yu. A. Danilov, and O. V. Vikhrova, Fiz. Nizk. Temp. (Karkov) 33(2), 239 (2007) [Low Temp. Phys. 33 (2), 174 (2007)].

    Google Scholar 

  6. P. M. Krstaji, F. M. Peeters, V. A. Ivanov, V. Fleurov, and K. Kikoin, Phys. Rev. B: Condens. Matter 70, 195215 (2004).

    Google Scholar 

  7. T. Dietl, H. Ohno, and F. Matsukura, Phys. Rev. B: Condens. Matter 63, 195205 (2001).

    Google Scholar 

  8. A. M. Nazmul, T. Amemiya, Y. Shuto, S. Sugahara, and M. Tanaka, Phys. Rev. Lett. 95, 017201 (2005).

    Google Scholar 

  9. B. A. Aronzon, V. A. Kul’bachinskiĭ, P. V. Gurin, A. B. Davydov, V. V. Ryl’kov, A. B. Granovski, O. V. Vikhrova, Yu. A. Danilov, B. N. Zvonkov, Y. Horikoshi, and K. Onomitsu, Pis’ma Zh. Éksp. Teor. Fiz. 85(1), 32 (2007) [JETP Lett. 85 (1), 27 (2007)].

    Google Scholar 

  10. V. A. Kul’bachinski, P. V. Gurin, Yu. A. Danilov, E. I. Malysheva, Y. Horikoshi, and K. Onomitsu, Fiz. Tekh. Poluprovodn. (St. Petersburg) 41(6), 674 (2007) [Semiconductors 41 (6), 655 (2007)].

    Google Scholar 

  11. Yu. V. Vasil’eva, Yu. A. Danilov, Ant. A. Ershov, B. N. Zvonkov, E. A. Uskova, A. B. Davydov, B. A. Aronzon, S. V. Gudenko, V. V. Ryl’kov, A. B. Granovsky, E. A. Gan’shina, N. S. Perov, and A. N. Vinogradov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 39(1), 87 (2005) [Semiconductors 39 (1), 77 (2005)].

    Google Scholar 

  12. M. Tanaka, J. P. Harbison, J. DeBoeck, T. Sands, B. Philips, T. L. Cheeks, and V. G. Keramidas, Appl. Phys. Lett. 62, 1565 (1993).

    Article  ADS  Google Scholar 

  13. F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara, Phys. Rev. B: Condens. Matter 57, 2037R (1998).

  14. D. Serrate, J. M. de Teresa, P. A. Algarabel, M. R. Ibarra, and J. Galibert, Phys. Rev. B: Condens. Matter 71, 104409-1 (2005).

    Google Scholar 

  15. K. I. Kugel, A. L. Rakhmanov, A. O. Sboychakov, M. Yu. Kagan, I. V. Brodsky, and A. V. Klaptsov, Zh. Éksp. Teor. Fiz. 125(3), 648 (2004) [JETP 98 (3), 572 (2004)].

    Google Scholar 

  16. H. Ohno and F. Matsukura, Solid State Commun. 117, 179 (2001).

    Article  ADS  Google Scholar 

  17. K. W. Edmonds, K. Y. Wang, R. P. Campion, A. C. Neumann, C. T. Foxon, B. L. Gallagher, and P. C. Main, Appl. Phys. Lett. 81, 3010 (2003).

    Article  ADS  Google Scholar 

  18. L. Shchurova, J. Phys.: Conf. Ser. 100, 99 (2008).

    Article  Google Scholar 

  19. D. J. Ashen, P. J. Dean, D. T. J. Hurle, J. B. Mullin, A. M. White, and P. D. Greene, J. Phys. Chem. Solids 36, 1041 (1975).

    Article  ADS  Google Scholar 

  20. A. M. Yakunin, A. Y. Silov, P. M. Koenraad, J. H. Wolter, W. van Roy, J. de Boeck, J. M. Tang, and M. E. Flatté, Phys. Rev. Lett. 92, 216806 (2004).

    Google Scholar 

  21. T. Jungwirth, Jairo Sinova, A. H. MacDonald, B. L. Gallagher, V. Novák, K. W. Edmonds, A. W. Rushforth, R. P. Campion, C. T. Foxon, L. Eaves, E. Olejnk, J. Mašek, S.-R. Eric Yang, J. Wunderlich, C. Gould, L. W. Molenkamp, T. Dietl, and H. Ohno, Phys. Rev. B 76, 125206 (2007).

    Google Scholar 

  22. R. M. Corless, G. H. Gonnet, D. E. J. Hare, D. Jeffrey, and D. Knuth, Adv. Comput. Math. 5, 329 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  23. F. Shafee, J. Appl. Math. 72(6), 785 (2007).

    MATH  MathSciNet  Google Scholar 

  24. V. A. Kulbachinskii, P. V. Gurin, O. V. Vikhrova, Yu. A. Danilov, and B. N. Zvonkov, J. Phys.: Conf. Ser. 100, 042025 (2008).

    Google Scholar 

  25. T. Uhuma, M. Yoshita, T. Noda, H. Sakaki, and H. Akiyama, J. Appl. Phys. 93, 1586 (2003).

    Article  ADS  Google Scholar 

  26. T. Noda and M. Tanaka, Appl. Phys. Lett. 57, 1651 (1990).

    Article  ADS  Google Scholar 

  27. S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980).

    Article  ADS  Google Scholar 

  28. M. I. Dyakonov, Solid State Commun. 92, 711 (1994).

    Article  ADS  Google Scholar 

  29. S. McPhail, C. E. Yasin, A. R. Hamilton, M. Y. Simmons, E. H. Linfield, M. Pepper, and D. A. Ritchie, Phys. Rev. B: Condens. Matter 70, 245311 (2004).

    Google Scholar 

  30. N. J. Traynor and R. T. Harley, Phys. Rev. B: Condens. Matter 51, 7361 (1995).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kulbachinskii.

Additional information

Original Russian Text © V.A. Kulbachinskii, L.Yu. Shchurova, 2009, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2009, Vol. 136, No. 1, pp. 135–147.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulbachinskii, V.A., Shchurova, L.Y. Thermal, transport, and magnetotransport properties of free charge carriers in Mn-doped structures with a GaAs/InGaAs/GaAs quantum well. J. Exp. Theor. Phys. 109, 117–127 (2009). https://doi.org/10.1134/S1063776109070152

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776109070152

PACS numbers

Navigation