Skip to main content
Log in

Fractal structure of films deposited in a tokamak

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The surface of amorphous films deposited in the T-10 tokamak was studied in a scanning tunnel microscope. The surface relief on a scale from 10 nm to 100 μm showed a stochastic surface topography and revealed a hierarchy of grains. The observed variety of irregular structures of the films was studied within the framework of the concept of scale invariance using the methods of fractal geometry and statistical physics. The experimental probability density distribution functions of the surface height variations are close in shape to the Cauchy distribution. The stochastic surface topography of the films is characterized by a Hurst parameter of H = 0.68–0.85, which is evidence of a nontrivial self-similarity of the film structure. The fractal character and porous structure of deposited irregular films must be considered as an important issue related to the accumulation of tritium in the ITER project. The process of film growth on the surface of tokamak components exposed to plasma has been treated within the framework of the general concept of inhomogeneous surface growth. A strong turbulence of the edge plasma in tokamaks can give rise to fluctuations in the incident flux of particles, which leads to the growth of fractal films with grain dimensions ranging from nano-to micrometer scale. The shape of the surface of some films found in the T-10 tokamak has been interpreted using a model of diffusion-limited aggregation (DLA). The growth of films according to the discrete DLA model was simulated using statistics of fluctuations observed in a turbulent edge plasma of the T-10 tokamak. The modified DLA model reproduces well the main features of the surface of some films deposited in tokamaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. R. Romanov, B. N. Kolbasov, V. Kh. Alimov, et al., J. Nucl. Mater. 307–311, 1294 (2002).

    Article  Google Scholar 

  2. E. Delchambre et al., in Proceedings of 30th EPS Conference on Controlled Fusion and Plasma Physics (St. Petersburg, 2003), Vol. 27A, P-3.169.

  3. V. N. Tsytovich and J. Winter, Usp. Fiz. Nauk 168, 899 (1998) [Phys. Usp. 41, 815 (1998)].

    Article  Google Scholar 

  4. W. Jacob, Thin Solid Films 326, 1 (1998).

    Article  ADS  Google Scholar 

  5. G. Federici, J. N. Brooks, D. P. Coster, et al., J. Nucl. Mater. 290–293, 260 (2001).

    Article  Google Scholar 

  6. V. Kh. Alimov et al., Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez, No. 2, 45 (2000).

  7. K. Maruyama, W. Jacob, and J. Roth, J. Nucl. Mater. 264, 56 (1999).

    Article  ADS  Google Scholar 

  8. J. Winter and G. J. Gebauer, J. Nucl. Mater. 266–269, 228 (1999).

    Article  Google Scholar 

  9. O. I. Buzhinskij, I. V. Opimach, V. A. Barsuk, et al., J. Nucl. Mater. 266–269, 793 (1999).

    Article  Google Scholar 

  10. G. Federici, C. H. Skinner, J. N. Brooks, et al., Nucl. Fusion 41, 1967 (2001).

    Article  ADS  Google Scholar 

  11. M. Rubel, M. Cecconelli, J. A. Malmberg, et al., Nucl. Fusion 41, 1087 (2001).

    Article  ADS  Google Scholar 

  12. V. Philipps, P. Weinhold, A. Kirchner, and M. Rubel, Vacuum 67, 399 (2002).

    Article  Google Scholar 

  13. B. B. Kadomtsev, Tokamak Plasma: A Complex Physical System (Inst. of Physics, Bristol, 1992).

    Google Scholar 

  14. M. Rubel, J. von Seggern, P. Karduck, et al., J. Nucl. Mater. 266–269, 1185 (1999).

    Article  Google Scholar 

  15. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Material Processing (Wiley, New York, 1994).

    Google Scholar 

  16. A. L. Barabasi and H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge Univ. Press, Cambridge, 1995).

    MATH  Google Scholar 

  17. B. Drossel and M. Kardar, Phys. Rev. E 55, 5026 (1997).

    Article  ADS  Google Scholar 

  18. Molecular Beam Epitaxy and Heterostructures, Ed. by Leroy L. Chang (2002), NATO ASI Ser., Ser. E, Vol. 87.

  19. J. T. Drotar, Y.-P. Zhao, T.-M. Lu, and G.-C. Wang, Phys. Rev. B 64, 125411 (2001).

    Google Scholar 

  20. L. N. Khimchenko, V. P. Budaev, M. I. Guseva, et al., in Proceedings of 31st EPS Conference on Plasma Physics (ECA, London, 2004), Vol. 28G, P-4.146.

    Google Scholar 

  21. L. N. Khimchenko et al., in Proceedings of 30th EPS Conference on Controlled Fusion and Plasma Physics (St. Petersburg, 2003), Vol. 27A, P-3.119.

  22. J. Feder, Fractals (Plenum, New York, 1988).

    MATH  Google Scholar 

  23. Stochastic Models of Structural Plasma Turbulence, Ed. by V. Yu. Korolev and N. N. Skvortsova (Mosk. Gos. Univ., Moscow, 2003) [in Russian].

    Google Scholar 

  24. T. Witten and L. Sander, Phys. Rev. B 27, 5686 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  25. T. Witten and L. Sander, Phys. Rev. Lett. 47, 1400 (1981).

    Article  ADS  Google Scholar 

  26. V. V. Alikaev, A. A. Bagdasarov, E. L. Berezovsky, et al., Plasma Phys. Control. Fusion 30, 381 (1988).

    Article  ADS  Google Scholar 

  27. N. Yu. Sveshnikov et al., Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez, No. 3, 3 (2004).

  28. M. R. Spiegel, Theory and Problems of Probability and Statistics (McGraw-Hill, New York, 1992), p. 114.

    Google Scholar 

  29. P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  30. M. Carlson and J. Doyle, Phys. Rev. E 60, 1412 (1999).

    Article  ADS  Google Scholar 

  31. H. M. Hastings and G. Sugihara, Fractals: A User’s Guide for the Natural Sciences (Oxford Univ. Press, Oxford, 1993).

    Google Scholar 

  32. B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1983; Inst. Komp’yut. Issled., Moscow, 2002).

    Google Scholar 

  33. M. B. Isichenko, Rev. Mod. Phys. 64, 961 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  34. B. B. Mandelbrot et al., SIAM Rev. 10(4), 422 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  35. R. F. Voss, in Fundamental Algorithms in Computer Graphics, Ed. by R. A. Earnshaw (Springer, Berlin, 1985), p. 805.

    Google Scholar 

  36. V. P. Budaev, Y. Kikuchi, Y. Uesugi, and S. Takamura, Nucl. Fusion 44, S108 (2004).

    Article  ADS  Google Scholar 

  37. P. D. Haalandts, A. Garscadden, B. Ganguly, et al., Plasma Sources Sci. Technol. 3, 381 (1994).

    Article  ADS  Google Scholar 

  38. V. P. Budaev, S. Takamura, N. Ohno, and S. Masuzaki, Nucl. Fusion 46, S181 (2006).

    Article  ADS  Google Scholar 

  39. R. A. Moyer, R. D. Lehmer, T. E. Evans, et al., Plasma Phys. Control. Fusion 38, 1273 (1996).

    Article  ADS  Google Scholar 

  40. V. Budaev, G. Fuchs, R. Ivanov, and U. Samm, Plasma Phys. Control. Fusion 35, 429 (1993).

    Article  ADS  Google Scholar 

  41. G. Y. Antar, S. I. Krasheninnikov, P. Devynck, et al., Phys. Rev. Lett. 87, 065001 (2001).

    Google Scholar 

  42. B. A. Carreras, V. E. Lynch, and B. LaBombard, Phys. Plasmas 8, 3702 (2001).

    Article  ADS  Google Scholar 

  43. A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 9 (1941).

    Google Scholar 

  44. M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56, 889 (1986).

    Article  MATH  ADS  Google Scholar 

  45. M. B. Hastings and L. S. Levitov, Physica D (Amsterdam) 116, 244 (1998).

    MATH  ADS  Google Scholar 

  46. M. B. Ryabov, E. B. Postnikov, and A. Yu. Loskutov, Zh. Éksp. Teor. Fiz. 128, 292 (2005) [JETP 101, 253 (2005)].

    Google Scholar 

  47. W. W. Mullins and R. F. Sekerka, J. Appl. Phys. 34, 323 (1963).

    Article  ADS  Google Scholar 

  48. Th. C. Halsey, Phys. Today 53, 36 (2000).

    Article  Google Scholar 

  49. B. Drossel and M. Kardar, Phys. Rev. E 55, 5026 (1997).

    Article  ADS  Google Scholar 

  50. M. Warrier, R. Schneider, E. Salonen, and K. Nordlund, Contrib. Plasma Phys. 44, 307 (2004).

    Article  ADS  Google Scholar 

  51. J. Roth, J. Nucl. Mater. 266–269, 51 (1999).

    Article  Google Scholar 

  52. A. B. Mikhaikovsky, in Basic Plasma Physics: Selected Chapters, Handbook of Plasma Physics, Ed. by A. A. Galeev and R. N. Sudan (Énergoatomizdat, Moscow, 1983; North-Holland, Amsterdam, 1983), Vols. 1, 2, p. 299.

    Google Scholar 

  53. V. C. Pandolfelli, Mater. Res. 1, 47 (1998).

    Google Scholar 

  54. M. Tanaka, J. Mater. Sci. 31, 749 (1996).

    Article  ADS  Google Scholar 

  55. B. M. Smirnov, Usp. Fiz. Nauk 161, 171 (1991) [Sov. Phys. Usp. 34, 526 (1991)].

    Google Scholar 

  56. M. Shiratani et al., in Proceedings of International Conference on Plasma Surface Interaction in Controlled Fusion Devices (Hefei, China, 2006), O-29.

  57. B. Drossel and M. Kardar, Phys. Rev. Lett. 85, 614 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.P. Budaev, L.N. Khimchenko, 2007, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 131, No. 4, pp. 711–728.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budaev, V.P., Khimchenko, L.N. Fractal structure of films deposited in a tokamak. J. Exp. Theor. Phys. 104, 629–643 (2007). https://doi.org/10.1134/S1063776107040139

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776107040139

PACS numbers

Navigation