Skip to main content
Log in

Improvement of the Diffraction Properties of Thiocyanate Dehydrogenase Crystals

  • STRUCTURE OF MACROMOLECULAR COMPOUNDS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

During determination of the thiocyanate dehydrogenase (TcDH) structure difficulties have occurred, related to the fact that enzyme crystals have been either twinned or strongly anisotropic. The diffraction quality of crystals can be improved by using mutant forms as objects of a study or by studying the structure of a related enzyme from another organism. Based on the analysis of the oligomeric structure of TcDH, the mutant forms of the enzyme that are promising for improving the diffraction properties have been proposed. The crystals have been obtained and the structures of the TcDH mutant forms with the substitutions T169A and K281A have been solved. The structure of the mutant form with the substitution T169A is found to be similar to the previously solved structures. In the structure of the mutant form with the substitution K281A, a change in the tetramer structure that made twinning impossible has been detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. D. Y. Sorokin, T. P. Tourova, A. M. Lysenko, et al., Int. J. Syst. Evol. Microbiol. 52, 657 (2002). https://doi.org/10.1099/00207713-52-2-657

    Article  CAS  PubMed  Google Scholar 

  2. T. V. Tikhonova, D. Y. Sorokin, W. R. Hagen, et al., Proc. Natl. Acad. Sci. U. S. A. 117, 5280 (2020). https://doi.org/10.1073/pnas.1922133117

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. K. Paraskevopoulos, S. V. Antonyuk, R. G. Sawers, et al., J. Mol. Biol. 362, 55 (2006). https://doi.org/10.1016/j.jmb.2006.06.064

    Article  CAS  PubMed  Google Scholar 

  4. A. A. Lebedev, A. A. Vagin, and G. N. Murshudov, Acta Crystallogr. D 62, 83 (2006). https://doi.org/10.1107/S0907444905036759

    Article  ADS  CAS  PubMed  Google Scholar 

  5. G. N. Murshudov, P. Skubák, A. A. Lebedev, et al., Acta Crystallogr. D 67, 355 (2011). https://doi.org/10.1107/S0907444911001314

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. I. Campeotto, A. Lebedev, A. M. M. Schreurs, et al., Sci. Rep. 8, 14876 (2018). https://doi.org/10.1038/s41598-018-32962-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. T. O. Yeates, Methods Enzymol. 276, 344 (1997). https://doi.org/10.1016/S0076-6879(97)76068-3

    Article  CAS  PubMed  Google Scholar 

  8. J. E. Padilla and T. O. Yeates, Acta Crystallogr. D 59, 1124 (2003). https://doi.org/10.1107/S0907444903007947

    Article  ADS  PubMed  Google Scholar 

  9. F. Yang, Z. Dauter, and A. Wlodawer, Acta Crystallogr. D 56, 959 (2000). https://doi.org/10.1107/S0907444900007162

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Z. Derewenda, S. // Acta Cryst. D 66, 604 (2010). https://doi.org/10.1107/S090744491000644X

    Article  CAS  Google Scholar 

  11. K. L. Longenecker, S. M. Garrard, P. J. Sheffield, and Z. S. Derewenda, Acta Crystallogr. D 57, 679 (2001). https://doi.org/10.1107/S0907444901003122

    Article  ADS  CAS  PubMed  Google Scholar 

  12. G. A. Malawski, R. C. Hillig, F. Monteclaro, et al., Protein Sci. 15, 2718 (2006). https://doi.org/10.1110/ps.062491906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. D. B. Neau, N. C. Gilbert, S. G. Bartlett, et al., Acta Crystallogr. F 63, 972 (2007). https://doi.org/10.1107/S1744309107050993

    Article  CAS  Google Scholar 

  14. A. Backmark, M. Nyblom, S. Törnroth-Horsefield, et al., Acta Crystallogr. D 64, 1183 (2008). https://doi.org/10.1107/S090744490802948X

    Article  ADS  CAS  PubMed  Google Scholar 

  15. R. D. Svetogorov, P. V. Dorovatovskii, and V. A. Lazarenko, Cryst. Res. Technol. 55, 1900184 (2020). https://doi.org/1002/crat.201900184

  16. W. Kabsch, Acta Crystallogr. D 66, 125 (2010). https://doi.org/10.1107/S0907444909047337

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. A. Vagin and A. Teplyakov, Acta Crystallogr. D 66, 22 (2010). https://doi.org/10.1107/S0907444909042589

    Article  ADS  CAS  PubMed  Google Scholar 

  18. M. D. Winn, C. C. Ballard, K. D. Cowtan, et al., Acta Crystallogr. D 67, 235 (2011). https://doi.org/10.1107/S0907444910045749

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Acta Crystallogr. D 66, 486 (2010). https://doi.org/10.1107/S0907444910007493

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. E. Krissinel and K. Henrick, J. Mol. Biol. 372, 774 (2007). https://doi.org/10.1016/j.jmb.2007.05.022

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, grant no. 23-74-30004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Varfolomeeva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varfolomeeva, L.A., Polyakov, K.M., Komolov, A.S. et al. Improvement of the Diffraction Properties of Thiocyanate Dehydrogenase Crystals. Crystallogr. Rep. 68, 886–891 (2023). https://doi.org/10.1134/S1063774523600990

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774523600990

Navigation