Skip to main content
Log in

Exotic Spin Structures in Transition-Metal Monosilicides and Monogermanides

  • REVIEWS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Monosilicides and monohermanides of transition metals (e.g., MnSi) are characterized by a noncentrosymmetric structure of the B20 type, which leads to the occurrence of the Dzyaloshinski–Moriya (DM) interaction and, as a consequence, helicoidal magnetic ordering. The sign of the DM interaction determines the direction (clockwise or anticlockwise) of magnetic-helicoid twist. It is found that the type of atoms (e.g., Mn and Fe) present in a compound corresponds unambiguously to the sign of DM interaction in both silicides and germanides of transition metals. In turn, the replacement of Mn with Fe atoms in \({\text{M}}{{{\text{n}}}_{{1-x}}}\)FexGe (and some other) solid solutions results in a flip of the magnetic system chirality. These compounds demonstrates also a complex nature of the first-order temperature phase transition (close to the second-order one), complicated by a multicomponent order parameter and accompanied by a wide range of critical helical fluctuations. The magnetic field–temperature (HT) phase diagram demonstrates occurrence of a new phase with a skyrmion lattice structure, or A-phase, in a narrow range of fields near the phase-transition point. Application of pressure or replacement of Mn with Fe or Co atoms leads to disappearance of long-range magnetic order and occurrence of a quantum phase transition. This review contains the experimental results obtained using small-angle neutron scattering (SANS) and characterizing the magnetic properties and phase diagrams of helicoidal magnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.

Similar content being viewed by others

REFERENCES

  1. H. D. Flack, Acta Crystallogr. A 39 (6), 876 (1983).

    Article  Google Scholar 

  2. H. D. Flack and G. Bernardinelli, Acta Crystallogr. A 55 (5), 908 (1999).

    Article  Google Scholar 

  3. S. V. Grigoriev, D. Chernyshov, V. A. Dyadkin, et al., Phys. Rev. Lett. 102 (3), 037204 (2009).

    Article  ADS  Google Scholar 

  4. S. V. Grigoriev, D. Chernyshov, V. A. Dyadkin, et al., Phys. Rev. B 81, 012408 (2010).

    Article  ADS  Google Scholar 

  5. V. Dyadkin, S. Grigoriev, S. V. Ovsyannikov, et al., Acta Crystallogr. B 70, 676 (2014).

    Article  Google Scholar 

  6. L. Vocadlo, G. D. Price, and I. G. Wood, Acta Crystallogr. B 55, 484 (1999).

    Article  Google Scholar 

  7. V. E. Dmitrienko, Acta Crystallogr. A 50, 515 (1994).

    Article  Google Scholar 

  8. D. van der Marel, A. Damascelli, K. Schulte, and A. Menovsky, Physica B 244, 138 (1998).

    Article  ADS  Google Scholar 

  9. H. Wilhelm, M. Schmidt, R. Cardoso-Gil, et al., Sci. Technol. Adv. Mater. 8, 416 (2007).

    Article  Google Scholar 

  10. S. V. Grigoriev, S. V. Maleyev, A. I. Okorokov, et al., Phys. Rev. B 72, 134420 (2005).

    Article  ADS  Google Scholar 

  11. J. M. Hopkinson and H.-Y. Kee, Phys. Rev. B 74 (22), 224441 (2006).

    Article  ADS  Google Scholar 

  12. E. Fawcett, J. P. Maita, and J. H. Wernick, Int. J. Magn. 1, 29 (1970).

    Google Scholar 

  13. M. Matsunaga, Y. Ishikawa, and T. J. Nakajima, Phys. Soc. Jpn. 51, 1153 (1982).

    Article  ADS  Google Scholar 

  14. S. M. Stishov, A. E. Petrova, S. Khasanov, et al., Phys. Rev. B 76, 052405 (2007).

    Article  ADS  Google Scholar 

  15. S. M. Stishov, A. E. Petrova, S. Khasanov, et al., J. Phys. Condens. Matter 20, 235222 (2008).

    Article  ADS  Google Scholar 

  16. S. M. Stishov, A. E. Petrova, A. A. Shikov, et al., Phys. Rev. Lett. 105, 236403 (2010).

    Article  ADS  Google Scholar 

  17. S. V. Grigoriev, V. A. Dyadkin, D. Menzel, et al., Phys. Rev. B 76, 224424 (2007).

    Article  ADS  Google Scholar 

  18. S. V. Grigoriev, S. V. Maleyev, V. A. Dyadkin, et al., Phys. Rev. B 76, 092407 (2007).

    Article  ADS  Google Scholar 

  19. S. V. Grigoriev, V. A. Dyadkin, E. V. Moskvin, et al., Phys. Rev. B 79, 144417 (2009).

    Article  ADS  Google Scholar 

  20. S. Muhlbauer, B. Binz, F. Jonietz, et al., Science 323, 915 (2009).

    Article  ADS  Google Scholar 

  21. U. K. Rossler, A. N. Bogdanov, and C. Pfleiderer, Nature 442, 797 (2006).

    Article  ADS  Google Scholar 

  22. C. Pfleiderer, T. Adams, A. Bauer, et al., J. Phys.: Condens. Matter 22, 164207 (2010).

    ADS  Google Scholar 

  23. B. Lebech, J. Bernhard, and T. Freltoft, J. Phys.: Condens Matter 1 (35), 6105 (1989).

    ADS  Google Scholar 

  24. S. V. Grigoriev, N. Potapova, S.-A. Siegfried, et al., Phys. Rev. Lett. 110, 207201 (2013).

    Article  ADS  Google Scholar 

  25. S. V. Grigoriev, S.-A. Siegfried, E. V. Altynbayev, et al., Phys. Rev. B 90, 174414 (2014).

    Article  ADS  Google Scholar 

  26. E. Altynbaev, S.-A. Siegfried, E. Moskvin, et al., Phys. Rev. B 94, 174403 (2016).

    Article  ADS  Google Scholar 

  27. G. A. Valkovskiy, E. V. Altynbaev, M. D. Kuchugura, et al., J. Phys.: Condens. Matter 28, 375401 (2016).

    Google Scholar 

  28. E. Altynbaev, S.-A. Siegfried, V. Dyadkin, et al., Phys. Rev. B 90, 174420 (2014).

    Article  ADS  Google Scholar 

  29. N. Martin, M. Deutsch, F. Bert, et al., Phys. Rev. B 93, 174405 (2016).

    Article  ADS  Google Scholar 

  30. E. Altynbaev, S.-A. Siegfried, P. Strauß, et al., Phys. Rev. B 97 (14), 144411 (2018).

    Article  ADS  Google Scholar 

  31. E. Altynbaev, N. Martin, A. Heinemann, et al., Phys. Rev. B 101, 100404(R) (2020).

  32. N. Martin, M. Deutsch, G. Chaboussant, et al., Phys. Rev. B 96, 020413(R) (2017).

  33. N. Martin, I. Mirebeau, C. Franz, et al., Phys. Rev. B 99, 100402(R) (2019).

  34. A. Tsvyashchenko, J. Less Common Met. 99 (2), L9 (1984).

    Article  Google Scholar 

  35. L. G. Khvostantsev, L. F. Vereshchagin, and A. P. Novikov, High Temp. High Press. 9, 637 (1977).

    Google Scholar 

  36. Y. Ishikawa, G. Shirane, J. A. Tarvin, and M. Kohgi, Phys. Rev. B 16 (11), 4956 (1977).

    Article  ADS  Google Scholar 

  37. Y. Ishikawa, K. Tajima, D. Bloch, and M. Roth, Solid State Commun. 19 (6), 525 (1976).

    Article  ADS  Google Scholar 

  38. Y. Ishikawa and M. Arai, J. Phys. Soc. Jpn. 53 (8), 2726 (1984).

    Article  ADS  Google Scholar 

  39. C. Gregory, D. Lambrick, and N. Bernhoeft, J. Magn. Magn. Mater. 104–107, Ch. 1, 689 (1992).

    Article  ADS  Google Scholar 

  40. K. Koyama, T. Goto, T. Kanomata, and R. Note, Phys. Rev. B 62 (2), 986 (2000).

    Article  ADS  Google Scholar 

  41. M. Date, K. Okuda, and K. Kadowaki, J. Phys. Soc. Jpn. 42 (5), 1555 (1977).

    Article  ADS  Google Scholar 

  42. N. Manyala, Y. Sidis, J. F. DiTusa, et al., Nature 404 (6778), 581 (2000).

    Article  ADS  Google Scholar 

  43. S. Kusaka, K. Yamamoto, T. Komatsubara, and Y. Ishikawa, Solid State Commun. 20 (9), 925 (1976).

    Article  ADS  Google Scholar 

  44. M. Kawakami and T. Hihara, J. Phys. Soc. Jpn. 25 (6), 1733 (1968).

    Article  ADS  Google Scholar 

  45. K. Motoya, H. Yasuoka, Y. Nakamura, et al., J. Phys. Soc. Jpn. 44 (3), 833 (1978).

    Article  ADS  Google Scholar 

  46. H. Yasuoka, V. Jaccarino, R. C. Sherwood, and J. H. Wernick, J. Phys. Soc. Jpn. 44 (3), 842 (1978).

    Article  ADS  Google Scholar 

  47. M. L. Plumer, J. Phys.: Condens. Matter 2 (36), 7503 (1990).

    ADS  Google Scholar 

  48. M. L. Plumer and M. B. Walker, J. Phys. C 14 (31), 4689 (1981).

    Article  ADS  Google Scholar 

  49. M. B. Walker, Phys. Rev. B 40 (13), 9315 (1989).

    Article  ADS  Google Scholar 

  50. S. V. Maleyev, Phys. Rev. B 73 (17), 174402 (2006).

    Article  ADS  Google Scholar 

  51. K. Koyama, T. Goto, T. Kanomata, and R. Note, Phys. Rev. B 62, 986 (2000).

    Article  ADS  Google Scholar 

  52. P. Bak and M. H. Jensen, J. Phys. C 13, L881 (1980).

    Article  ADS  Google Scholar 

  53. O. Nakanishia, A. Yanase, A. Hasegawa, and M. Kataoka, Solid State Commun. 35, 995 (1980).

    Article  ADS  Google Scholar 

  54. I. E. Dzyaloshinskii, Zh. Eksp. Teor. Fiz. 46, 1420 (1964).

    Google Scholar 

  55. Y. Iguchi, S. Uemura, K. Ueno, and Y. Onose, Phys. Rev. B 92, 184419 (2015).

    Article  ADS  Google Scholar 

  56. S. V. Grigoriev, A. S. Sukhanov, and S. V. Maleyev, Phys. Rev. B 91, 224429 (2018).

    Article  ADS  Google Scholar 

  57. S.-A. Siegfried, E. V. Altynbaev, N. M. Chubova, et al., Phys. Rev. B 91, 184406 (2015).

    Article  ADS  Google Scholar 

  58. C. Pappas, E. Lelievre-Berna, P. Falus, et al., Phys. Rev. Lett. 102, 197202 (2009).

    Article  ADS  Google Scholar 

  59. C. Pappas, E. Lelievre-Berna, P. Bentley, et al., Phys. Rev. B 83, 224405 (2011).

    Article  ADS  Google Scholar 

  60. S. V. Grigoriev, S. V. Maleyev, E. V. Moskvin, et al., Phys. Rev. B 81, 144413 (2010).

    Article  ADS  Google Scholar 

  61. S. V. Grigoriev, E. V. Moskvin, V. A. Dyadkin, et al., Phys. Rev. B 83, 224411 (2011).

    Article  ADS  Google Scholar 

  62. M. Janoschek, M. Garst, A. Bauer, et al., Phys. Rev. B 87, 134407 (2013).

    Article  ADS  Google Scholar 

  63. S. V. Grigoriev, S. V. Maleyev, A. I. Okorokov, et al., Phys. Rev. B 74, 214414 (2006).

    Article  ADS  Google Scholar 

  64. K. Ishimoto, H. Yamaguchi, Y. Yamaguchi, et al., J. Magn. Magn. Mat. 90–91, 163 (1990).

    Article  ADS  Google Scholar 

  65. K. Ishimoto, Y. Yamaguchi, J. Suzuki, et al., Physica B 213–214, 381 (1995).

    Article  ADS  Google Scholar 

  66. B. Lebech, P. Harris, J. Skov Pedersen, et al., J. Magn. Magn. Mater. 140, 119 (1995).

    Article  ADS  Google Scholar 

  67. E. Moskvin, S. Grigoriev, V. Dyadkin, et al., Phys. Rev. Lett. 110, 077207 (2013).

    Article  ADS  Google Scholar 

  68. T. Adams, S. Muhlbauer, C. Pfleiderer, et al., Phys. Rev. Lett. 107, 217206 (2011).

    Article  ADS  Google Scholar 

  69. A. Neubauer, C. Pfleiderer, B. Binz, et al., Phys. Rev. Lett. 102, 186602 (2009).

    Article  ADS  Google Scholar 

  70. W. Muenzer, A. Neubauer, T. Adams, et al., Phys. Rev. B 81, 041203(R) (2010).

  71. T. Adams, A. Chacon, M. Wagner, et al., Phys. Rev. Lett. 108, 237204 (2012).

    Article  ADS  Google Scholar 

  72. J. S. White, I. Levatic, A. A. Omrani, et al., J. Phys.: Condens. Matter 24, 432201 (2012).

    Google Scholar 

  73. U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, Nature 442, 797 (2006).

    Article  ADS  Google Scholar 

  74. S. V. Grigoriev, N. Potapova, V. A. Dyadkin, et al., JETP Lett. 100 (3), 238 (2014).

    Article  Google Scholar 

  75. I. M. Chubova, E. V. Moskvin, V. A. Dyad’kin, et al., 125 (5), 789 (2017).

  76. C. Pfleiderer, G. J. McMullan, S. R. Julian, and G. G. Lonzarich, Phys. Rev. B 55, 8330 (1997).

    Article  ADS  Google Scholar 

  77. A. Bauer, A. Neubauer, C. Franz, et al., Phys. Rev. B 82, 064404 (2010).

    Article  ADS  Google Scholar 

  78. Y. Nishihara, S. Waki, and S. Ogawa, Phys. Rev. B 30, 32 (1984).

    Article  ADS  Google Scholar 

  79. S. V. Demishev, I. I. Lobanova, V. V. Glushkov, et al., JETP Lett. 98, 829 (2013).

    Article  ADS  Google Scholar 

  80. S. Tewari, D. Belitz, and T. R. Kirkpatrick, Phys. Rev. Lett. 96, 047207 (2006).

    Article  ADS  Google Scholar 

  81. F. Kruger, U. Karahasanovic, and A. G. Green, Phys. Rev. Lett. 108, 067003 (2012).

    Article  ADS  Google Scholar 

  82. V. V. Glushkov, I. I. Lobanova, V. Yu. Ivanov, et al., Phys. Rev. Lett. 115, 256601 (2015).

    Article  ADS  Google Scholar 

  83. S. V. Demishev, V. V. Glushkov, and S. V. Grigor’ev, Usp. Fiz. Nauk 186, 628 (2016).

    Article  Google Scholar 

  84. T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism (Springer, Berlin, 1985).

    Book  Google Scholar 

  85. S. V. Demishev, V. V. Glushkov, I. I. Lobanova, et al., Phys. Rev. B 85, 045131 (2012).

    Article  ADS  Google Scholar 

  86. S. V. Demishev, A. N. Samarin, V. V. Glushkov, et al., JETP Lett. 100, 28 (2014).

    Article  ADS  Google Scholar 

  87. O. L. Makarova, A. V. Tsvyashchenko, G. Andre, et al., Phys. Rev. B 85, 205205 (2012).

    Article  ADS  Google Scholar 

  88. N. Kanazawa, J.-H. Kim, D. S. Inosov, et al., Phys. Rev. B 86, 134425 (2012).

    Article  ADS  Google Scholar 

  89. N. Kanazawa, Y. Onose, T. Arima, et al., Phys. Rev. Lett. 106, 156603 (2011).

    Article  ADS  Google Scholar 

  90. J. F. DiTusa, S. B. Zhang, K. Yamaura, et al., Phys. Rev. B 90, 144404 (2014).

    Article  ADS  Google Scholar 

  91. M. Deutsch, P. Bonville, A. V. Tsvyashchenko, et al., Phys. Rev. B 90, 144401 (2014).

    Article  ADS  Google Scholar 

  92. A. Tsvyashchenko, V. A. Sidorov, L. N. Fomicheva, et al., Solid State Phenom. 190, 225 (2012).

    Article  Google Scholar 

  93. K. Shibata, X. Z. Yu, T. Hara, et al., Nat. Nanotechnol. 8, 723 (2013).

    Article  ADS  Google Scholar 

  94. E. V. Altynbaev, A. S. Sukhanov, S. A. Siegfried, et al., Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled. 10 (8), 5 (2016).

    Google Scholar 

  95. H. Takizawa, T. Sato, T. Endo, and M. Shimada, J. Solid State Chem. 73, 40 (1988).

    Article  ADS  Google Scholar 

  96. S. V. Grigoriev, A. S. Sukhanov, E. V. Altynbaev, et al., Phys. Rev. B 92, 220415(R) (2015).

  97. T. Tanigaki, K. Shibata, N. Kanazawa, et al., Nano Lett. 15, 5438 (2015).

    Article  ADS  Google Scholar 

  98. X. Z. Yu, Y. Onose, N. Kanazawa, et al., Nature 465, 901 (2010).

    Article  ADS  Google Scholar 

  99. X. Z. Yu, N. Kanazawa, Y. Onose, et al., Nat. Mater. 10, 106 (2011).

    Article  ADS  Google Scholar 

  100. A. Tonomura, X. Yu, K. Yanagisawa, et al., Nano Lett. 12, 1673 (2012).

    Article  ADS  Google Scholar 

  101. T. Koretsune, T. Kikuchi, and R. Arita, J. Phys. Soc. Jpn. 87, 041011 (2018).

    Article  ADS  Google Scholar 

  102. J. Gayles, F. Freimuth, T. Schena, et al., Phys. Rev. Lett. 115, 036602 (2015).

    Article  ADS  Google Scholar 

  103. T. Kikuchi, T. Koretsune, R. Arita, and G. Tatara, Phys. Rev. Lett. 116, 247201 (2016).

    Article  ADS  Google Scholar 

  104. S. Mankovsky, S. Wimmer, S. Polesya, and H. Ebert, Phys. Rev. B 97, 024403 (2018).

    Article  ADS  Google Scholar 

  105. V. A. Chizhikov and V. E. Dmitrienko, Phys. Rev. B 88, 214402 (2013).

    Article  ADS  Google Scholar 

  106. V. Dyadkin, K. Prša, S. V. Grigoriev, et al., Phys. Rev. B 89, 140409(R) (2014).

Download references

ACKNOWLEDGMENTS

We are grateful to V.A. Dyad’kin, S.-A. Siegfried, E.V. Moskvin, N. Martin, and I. Mirebeau for their active participation in the experiments and fruitful discussion of the obtained results. We are also grateful to D. Menzel, L.N. Fomicheva, and A.V. Tsvyashchenko for supplying the samples for studies.

Funding

This study was supported by the Russian Science Foundation (grant no. 17-1201050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Grigoriev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altynbaev, E.V., Chubova, N.M. & Grigoriev, S.V. Exotic Spin Structures in Transition-Metal Monosilicides and Monogermanides. Crystallogr. Rep. 67, 118–136 (2022). https://doi.org/10.1134/S1063774522010023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774522010023

Navigation