Skip to main content
Log in

Model of the radial distribution function of pores in a layer of porous aluminum oxide

  • Surface and Thin Films
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

An empirical formula is derived to describe the quasi-periodic structure of a layer of porous aluminum oxide obtained by anodization. The formula accounts for two mechanisms of the transition from the ordered state (2D crystal) to the amorphous state. The first mechanism infers that vacancy-type defects arise, but the crystal lattice remains undestroyed. The second mechanism describes the lattice destruction. The radial distribution function of the pores in porous aluminum oxide is obtained using the Bessel transform. Comparison with a real sample is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Keller, M. S. Hunter, and D. L. Robinson, J. Electrochem. Soc. 100, 411 (1953).

    Article  Google Scholar 

  2. H. Masuda and K. Fukuda, Science 268, 1466 (1995).

    Article  ADS  Google Scholar 

  3. C. H. Martin, Chem. Mater. 8, 1739 (1996).

    Article  Google Scholar 

  4. E. G. Thompsom, Thin Solid Films 297, 192 (1997).

    Article  ADS  Google Scholar 

  5. O. Jessensky, F. Müller, and U. Gösele, Appl. Phys. Lett. 72, 1173 (1998).

    Article  ADS  Google Scholar 

  6. A. Govyadinov, I. Emeliantchik, and A. Kurilin, Nucl. Instrum. Methods Phys. Res. A 419, 667 (1998).

    Article  ADS  Google Scholar 

  7. K. Nielsch, J. Choi, and K. Schwirn, Nano Lett. 2, 677 (2002).

    Article  ADS  Google Scholar 

  8. A. A. Lutich, S. V. Gaponenko, N. V. Gaponenko, et al., Nano Lett. 4, 1755 (2004).

    Article  ADS  Google Scholar 

  9. A. I. Vorob’eva and E. A. Utkina, Mikroelektronika 34, 181 (2005).

    Google Scholar 

  10. Z. X. Su and W. Z. Zhou, Adv. Mater. 20, 3663 (2008).

    Article  Google Scholar 

  11. V. P. Parkhutik and V. I. Shershulsky, J. Phys. D 25, 1258 (1992).

    Article  ADS  Google Scholar 

  12. G. K. Singh, A. A. Golovin, and I. S. Aranson, Phys. Rev. B 73, 205422 (2006).

    Article  ADS  Google Scholar 

  13. N. L. Cherkas, Opt. Spektrosk. 81, 990 (1996).

    Google Scholar 

  14. N. M. Yakovleva, A. N. Yakovlev, M. M. Gafiyatullin, et al., Zavod. Lab. Diagn. Mater. 75, 21 (2009).

    Google Scholar 

  15. F. H. Kaatz, Naturwissenschaften 93, 374 (2006).

    Article  ADS  Google Scholar 

  16. A. Vodopivec, F. H. Kaatz, and B. Mohar, J. Math. Chem. 47, 1145 (2010).

    Article  MathSciNet  Google Scholar 

  17. M. R. Belic, V. Skarka, J. L. Deneubourg, et al., J. Mather. Biol. 24, 437 (1986).

    Article  MathSciNet  Google Scholar 

  18. A. Brodin, A. Nych, Yu. Ognysta, et al., Condens. Matter Phys. 13, 33601 (2010).

    Article  Google Scholar 

  19. F. R. Eder, J. Kotakoski, Yu. Kaiser, et al., Sci. Rep. 4, 4060 (2014).

    Article  ADS  Google Scholar 

  20. B. E. Warren, Chem. Rev. 26, 237 (1940).

    Article  Google Scholar 

  21. A. C. Wright and M. F. Thorpe, Phys. Status Solidi B 250, 931 (2013).

    Article  ADS  Google Scholar 

  22. G. A. Prins and H. Petersen, Physica 3, 147 (1936).

    Article  ADS  Google Scholar 

  23. A. E. Glauberman, Zh. Eksp. Teor. Fiz. 22, 249 (1952).

    Google Scholar 

  24. V. P. Tsvetkov, Izv. Vyssh. Uchebn. Zaved., Ser. Fiz., No. 1, 145 (1960).

    Google Scholar 

  25. S. Franchetti, Nuovo Cim. B 55, 335 (1968).

    Article  ADS  Google Scholar 

  26. N. N. Medvedev and Yu. I. Naberukhin, Phys. Chem. Liquids 8, 167 (1978).

    Article  Google Scholar 

  27. S. Baer, Physica A 91, 603 (1978).

    Article  ADS  Google Scholar 

  28. A. F. Skryshevskii, Structural Analysis of Liquids and Amorphous Solids (Vysshaya Shkola, Moscow, 1980) [in Russian], p. 49.

    Google Scholar 

  29. N. N. Medvedev, Yu. I. Naberukhin, and I. Yu. Semenova, J. Non-Cryst. Solids 64, 421 (1984).

    Article  ADS  Google Scholar 

  30. A. A. Miskevich and V. A. Loiko, Zh. Eksp. Teor. Fiz. 140, 5 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Cherkas.

Additional information

Original Russian Text © N.L. Cherkas, S.L. Cherkas, 2016, published in Kristallografiya, 2016, Vol. 61, No. 2, pp. 285–290.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherkas, N.L., Cherkas, S.L. Model of the radial distribution function of pores in a layer of porous aluminum oxide. Crystallogr. Rep. 61, 285–290 (2016). https://doi.org/10.1134/S106377451506005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377451506005X

Keywords

Navigation