Skip to main content
Log in

293-K conductivity optimization for single crystals of solid electrolytes with tysonite structure (LaF3): I. Nonstoichiometric phases R 1−yCayF3−y (R = La-Lu, Y)

  • Physical Properties of Crystals
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The systematic optimization of single-crystal fluoride-conducting solid electrolytes R 1 − y Ca y F3 − y with a tysonite type structure (LaF3) with respect to the conductivity at room temperature, σ(293 K), is based on high-temperature measurements of σ(T) of stoichiometric fluorides of rare earth elements, RF3 (R = La-Nd), in dependence of the radius \(R^{3 + } (r_{R^{3 + } } )\); two-component stoichiometric La1 − y R y F3 phases (R = Pr, Nd) in dependence on the average cation radius (r cat ); and two-component nonstoichiometric phases R 1 − y Ca y F3 − y (R = La-Lu, Y) in dependence of the CaF2 content. The optimization of the composition with respect to thermal stability is based on studying the phase diagrams of CaF2-RF3 systems and the behavior of R 1 − y Ca y F3 − y crystals upon heating when measuring temperature dependences σ(T). Singlecrystal samples of a number of investigated R 1 − y Ca y F3 − y compounds has σ(293 K) values high enough to be applied in solid-state electrochemical devices operating at room temperature (chemical sensors, fluorine-ion batteries, and accumulators) and in devices subjected to thermal cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Potanin, Zh. Vseross. Khim. O-va im. D. I. Mendeleeva 45(5–6), 58 (2001).

    Google Scholar 

  2. E. I. Ardashnikova, V. A. Prituzhalov, and I. B. Kutsenok, Functionalized Inorganic Fluorides: Synthesis, Characterization and Properties of Nanostructured Solids, Ed. by A. Tressaud (Willey, Chippenham, 2010) Ch. 14, p. 423.

  3. B. P. Sobolev, E. A. Krivandina, I. V. Murin, et al., USSR Inventor’s Certificate No. 311414 (November 31, 1988).

    Google Scholar 

  4. E. F. Sudakova, E. Ya. Alksnis, R. S. Perlovskii, et al., Symp. Solid State Ionics, Boston, Nov. 30–Dec. 4, 1992), p. 160.

  5. N. I. Sorokin, E. F. Sudakova, E. A. Krivandina, et al., Elektrokhimiya 35(2), 239 (1999).

    Google Scholar 

  6. N. I. Sorokin, E. A. Krivandina, Z. I. Zhmurova, et al., Proc. All-Russia Conf. “Sensor-2000”, St. Petersburg, June 21–23, 2000), p. 322.

  7. A. A. Potanin, Patent RF No. RU2295178 (April 21, 2005).

  8. M. Anji Reddy and M. Fichtner, J. Mater. Chem. 21, 17059 (2011).

    Article  Google Scholar 

  9. M. Faraday, Ann. Phys. 107, 247 (1834).

    Article  Google Scholar 

  10. R. W. Ure, J. Chem. Phys. 26(6), 1363 (1957).

    Article  ADS  Google Scholar 

  11. G. M. Zakharov, T. I. Nikitinskaya, and A. G. Khapachev, Fiz. Tverd. Tela 1(5), 835 (1959).

    Google Scholar 

  12. W. L. Fielder, NASA Technical Note D-3816 (1967).

  13. W. Bollmann, Phys. Status Solidi A 18, 313 (1973).

    Article  ADS  Google Scholar 

  14. M. Cyris, P. Muller, and J. Teltow, J. Phys. C 9, 63 (1973).

    Google Scholar 

  15. J. H. Kennedy, R. Miles, and J. Hunter, J. Electrochem. Soc. 120(11), 1441 (1973).

    Article  Google Scholar 

  16. A. Sher, R. Solomon, K. Lee, et al., Phys. Rev. 144, 593 (1966).

    Article  ADS  Google Scholar 

  17. L. E. Nagel and M. O’ Keeffe, Fast Ion Transport in Solids, Ed. by W. van Gool (North Holland, Amsterdam, 1973), p. 165.

  18. A. V. Chadwick, Solid State Ionics 8, 209 (1983).

    Article  Google Scholar 

  19. C. R. A. Catlow and W. Hayes, J. Phys. C 15(3), L9 (1982).

    Article  ADS  Google Scholar 

  20. T. Vogt, Neues Jahrb. Mineral. 2(1), 9 (1914).

    MathSciNet  Google Scholar 

  21. B. P. Sobolev, E. G. Ippolitov, B. M. Zhigarnovskii, et al., Neorg. Mater. 1(3), 362 (1965).

    Google Scholar 

  22. L. S. Garashina and B. P. Sobolev, Kristallografiya 16(2), 307 (1971).

    Google Scholar 

  23. N. L. Tkachenko, L. S. Garashina, O. E. Izotova, et al., J. Solid State Chem. 8(3), 213 (1973).

    Article  ADS  Google Scholar 

  24. B. P. Sobolev, P. P. Fedorov, K. B. Seiranian, et al., J. Solid State Chem. 17(2), 201 (1976).

    Article  ADS  Google Scholar 

  25. B. P. Sobolev and P. P. Fedorov, J. Less-Common Met. 60(1), 33 (1978).

    Article  Google Scholar 

  26. B. P. Sobolev and K. B. Seiranian, J. Solid State Chem. 39(2), 337 (1981).

    Article  ADS  Google Scholar 

  27. B. P. Sobolev and N. L. Tkachenko, J. Less-Common Met. 85(2), 155 (1982).

    Article  Google Scholar 

  28. S. A. Kazanskii, Zh. Eksp. Teor. Fiz. 89(4), 1258 (1985).

    Google Scholar 

  29. S. A. Kazanskii and A. I. Ryskin, Phys. Solid State 44(8), 1415 (2002).

    Article  ADS  Google Scholar 

  30. J. S. Anderson, Problems of Nonstoichiometry, Ed. by A. Rabenau (North Holland, Amsterdam, 1970), p. 355.

  31. F. A. Kroger, The Chemistry of Imperfect Crystals (North-Holland, Amsterdam, 1964; Mir, Moscow, 1969).

    Google Scholar 

  32. P. P. Fedorov, Russ. J. Inorg. Chem. 43(Suppl. 3), 268 (2000).

    Google Scholar 

  33. B. P. Sobolev, The Rare Earth Trifluorides, Part 1: The High Temperature Chemistry of Rare Earth Trifluorides (Institut d’Estudis Catalons, Barcelona, 2000).

    Google Scholar 

  34. B. P. Sobolev, The Rare Earth Trifluorides, Part 2: Introduction to Materials Science of Multicomponent Metal Fluoride Crystals (Institute of Crystallography, Moscow, 2001; Institut d’Estudis Catalans, Barcelona, 2001).

    Google Scholar 

  35. N. I. Sorokin, A. K. Ivanov-Shitz, P. P. Fedorov, et al., Mater. Sci. Forum. 76, 9 (1991).

    Article  Google Scholar 

  36. N. I. Sorokin and B. P. Sobolev, Kristallografiya 39(1), 114 (1994).

    ADS  Google Scholar 

  37. N. I. Sorokin and B. P. Sobolev, Kristallografiya 39(5), 889 (1994).

    Google Scholar 

  38. N. I. Sorokin, E. A. Krivandina, D. N. Kuranov, et al., Kristallografiya 40(3), 563 (1995).

    Google Scholar 

  39. N. I. Sorokin, I. I. Buchinskaya, and B. P. Sobolev, Kristallografiya 40(6), 964 (1995).

    ADS  Google Scholar 

  40. N. I. Sorokin, M. V. Fominykh, E. A. Krivandina, et al., Kristallografiya 41(2), 310 (1996).

    Google Scholar 

  41. N. I. Sorokin, M. V. Fominykh, E. A. Krivandina, et al., Fiz. Tverd. Tela 40(4), 658 (1998).

    Google Scholar 

  42. N. I. Sorokin, M. V. Fominykh, E. A. Krivandina, et al., Fiz. Tverd. Tela 41(4), 638 (1999).

    Google Scholar 

  43. N. I. Sorokin, E. A. Krivandina, Z. I. Zhmurova, et al., Crystallogr. Rep. 45(4), 695 (2000).

    Article  ADS  Google Scholar 

  44. N. I. Sorokin, E. A. Krivandina, Z. I. Zhmurova, et al., Proc. 4th Int. Conf. “Single Crystal Growth, Heat and Mass Transfer”, Obninsk, Russia, 2001), p. 167.

  45. N. I. Sorokin and B. P. Sobolev, Crystallogr. Rep. 52(5), 842 (2007).

    Article  ADS  Google Scholar 

  46. N. I. Sorokin and B. P. Sobolev, Elektrokhimiya 43(4), 420 (2007).

    Google Scholar 

  47. N. I. Sorokin and B. P. Sobolev, Phys. Solid State 50(3), 416 (2008).

    Article  ADS  Google Scholar 

  48. B. P. Sobolev, Crystallogr. Rep. 57(3), 434 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  49. P. P. Fedorov and B. P. Sobolev, Zh. Neorg. Khim. 24, 4 (1979).

    Google Scholar 

  50. M. S. Frant and J. W. Ross, Science 154, 1553 (1966).

    Article  ADS  Google Scholar 

  51. N. I. Sorokin, M. V. Fominykh, E. A. Krivandina, et al., Proc. 3rd Int. Conf. “Single Crystal Growth, Strength Problems, and Heat Mass Transfer”, Obninsk, Russia, 1999), p. 105.

  52. T. Takahashi, H. Iwahara, and T. Ishikava, J. Electrochem. Soc. 124(2), 280 (1977).

    Article  Google Scholar 

  53. B. P. Sobolev, V. B. Aleksandrov, P. P. Fedorov, et al., Kristallografiya 21(1), 96 (1976).

    Google Scholar 

  54. V. I. Morozov, L. N. Tret’yakova, P. P. Fedorov, et al., Neorg. Mater. 15(12), 2238 (1979).

    Google Scholar 

  55. I. V. Murin, O. V. Glumov, and B. P. Sobolev, Vestn. Leningrad Gos. Univ., Ser. Fiz., Khim., No. 2, 84 (1980).

    Google Scholar 

  56. I. V. Murin, O. V. Glumov, and Yu. V. Amelin, Zh. Neorg. Khim. 53(7), 1474 (1980).

    Google Scholar 

  57. I. V. Murin, O. V. Glumov, I. G. Podkolozina, et al., Zh. Prikl. Khim. 55(2), 300 (1982).

    Google Scholar 

  58. J. Schoonman, G. Oversluzen, and K. E. D. Wapenaar, Solid State Ionics 1, 211 (1980).

    Article  Google Scholar 

  59. A. Roos, A. F. Aalders, J. Schoonman, et al., Solid State Ionics 9–10, 571 (1983).

    Article  Google Scholar 

  60. H. Geiger, G. Schon, and H. Stork, Solid State Ionics 15, 155 (1985).

    Article  Google Scholar 

  61. L. S. Garashina, B. P. Sobolev, V. B. Aleksandrov, et al., Kristallografiya 25(2), 294 (1980).

    Google Scholar 

  62. N. I. Sorokin and B. P. Sobolev, Crystallogr. Rep. 57(4), 555 (2012).

    Article  ADS  Google Scholar 

  63. N. B. Bolotina, A. I. Kalyukanov, T. S. Chernaya, et al., Crystallogr. Rep. 59(3) (2014).

    Google Scholar 

  64. I. V. Murin, O. V. Glumov, and D. V. Samusik, Zh. Prikl. Khim. 64(10), 2171 (1991).

    Google Scholar 

  65. A. A. Potanin, Patent Application, WO 2006/112756 (2006).

  66. B. P. Sobolev, I. A. Sviridov, V. I. Fadeeva, et al., Crystallogr. Rep. 50(3), 478 (2005).

    Article  ADS  Google Scholar 

  67. B. P. Sobolev, I. A. Sviridov, V. I. Fadeeva, et al., Crystallogr. Rep. 53(5), 868 (2008).

    Article  ADS  Google Scholar 

  68. E. A. Krivandina, Z. I. Zhmurova, O. I. Lyamina, et al., Kristallografiya 41(5), 958 (1996).

    Google Scholar 

  69. B. P. Sobolev, Crystallogr. Rep. 47(Suppl. 1), 63 (2002).

    Article  ADS  Google Scholar 

  70. A. V. Chadwick, D. S. Hope, G. Jaroszkiewicz, et al., Fast Ion Transport in Solids, Ed. by Vashishta et al. (North-Holland, Amsterdam, 1979), p. 683.

  71. A. Roos, D. R. Franceschetti, and J. Schoonman, J. Phys. Chem. Solids 46(6), 645 (1985).

    Article  ADS  Google Scholar 

  72. N. I. Sorokin, Elektrokhimiya 41(8), 1015 (2005).

    Google Scholar 

  73. N. I. Sorokin and B. P. Sobolev, Elektrokhimiya 47(1), 118 (2011).

    Google Scholar 

  74. G. G. Glavin, Yu. A. Karpov, and B. A. Olmataev, Zavod. Lab. 35(2), 172 (1969).

    Google Scholar 

  75. V. A. Meleshina, O. I. Lyamina, E. A. Krivandina, et al., Kristallografiya 38(1), 177 (1993).

    Google Scholar 

  76. P. P. Fedorov and B. P. Sobolev, Kristallografiya 20(5), 949 (1975).

    Google Scholar 

  77. B. P. Sobolev, P. P. Fedorov, D. D. Ikrami, et al., Abst. EUCHEM Conf. on Chemistry of Rare Earths, Helsinki, 1978), p. 134.

  78. B. P. Sobolev, V. S. Sidorov, P. P. Fedorov, et al., Kristallografiya 22(5), 1009 (1977).

    Google Scholar 

  79. B. P. Sobolev, P. P. Fedorov, A. K. Galkin, et al., Crystal Growth (Nauka, Moscow, 1980), Vol. 13, p. 198 [in Russian].

    Google Scholar 

  80. R. D. Shannon, Acta Crystallogr. A 32(5), 751 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  81. N. I. Sorokin, Z. I. Zhmurova, E. A. Krivandina, et al., Crystallogr. Rep. 57(3), 461 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Sobolev.

Additional information

Original Russian Text © B.P. Sobolev, N.I. Sorokin, E.A. Krivandina, Z.I. Zhmurova, 2014, published in Kristallografiya, 2014, Vol. 59, No. 4, pp. 609–622.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobolev, B.P., Sorokin, N.I., Krivandina, E.A. et al. 293-K conductivity optimization for single crystals of solid electrolytes with tysonite structure (LaF3): I. Nonstoichiometric phases R 1−yCayF3−y (R = La-Lu, Y). Crystallogr. Rep. 59, 550–562 (2014). https://doi.org/10.1134/S1063774514040191

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774514040191

Keywords

Navigation