Skip to main content
Log in

Structural regularities of helicoidally-like biopolymers in the framework of algebraic topology: II. α-Helix and DNA structures

  • Crystallographic Symmetry
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The developed apparatus of the “structural application” of algebraic geometry and topology makes it possible to determine topologically stable helicoidally-like packings of polyhedra (clusters). A packing found is limited by a minimal surface with zero instability index; this surface is set by the Weierstrass representation and corresponds to the bifurcation point. The symmetries of the packings under consideration are determined by four-dimensional polyhedra (polytopes) from a closed sequence, which begins with diamondlike polytope {240}. One example of these packings is a packing of tetrahedra, which arises as a result of the multiplication of a peculiar starting aggregation of tetrahedra by a fractional 40/11 axis with an angle of helical rotation of 99°. The arrangement of atoms in particular positions of this starting aggregation allows one to obtain a model of the α-helix. This apparatus makes it possible to determine a priori the symmetry parameters of DNA double helices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. I. Samoylovich and A. L. Talis, Crystallogr. Rep. 58(4), 523 (2013).

    Article  ADS  Google Scholar 

  2. A. A. Tuzhilin and A. T. Fomenko, Elements of Geometry and Topology of Minimal Surface (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  3. G. E. Schulz and R. H. Schirmer, Principles of Protein Structure (Springer, Berlin, 1979).

    Book  Google Scholar 

  4. A. V. Finkel’shtein and O. B. Ptitsyn, Physics of Protein (Knizhnyi Dom Universitet, Moscow, 2005) [in Russian].

    Google Scholar 

  5. A. G. Kurosh, Theory of Groups (Gostekhizdat, Moscow, 1953) [in Russian].

    Google Scholar 

  6. M. I. Samoylovich and A. L. Talis, A Foundation for the Theory of Symmetry of Ordered Nanostructures (Technomash, Moscow, 2007).

    Google Scholar 

  7. M. I. Samoylovich and A. L. Talis, Crystallogr. Rep. 52(4), 574 (2007).

    Article  ADS  Google Scholar 

  8. M. I. Samoylovich and A. L. Talis, Dokl. Ross. Akad. Nauk, 420, 472 (2008).

    Google Scholar 

  9. M. I. Samoylovich and A. L. Talis, Crystallogr. Rep. 54, 1117 (2009).

    Article  ADS  Google Scholar 

  10. M. I. Samoylovich and A. L. Talis, Acta Crystallogr. A 66, 616 (2010).

    Article  ADS  Google Scholar 

  11. F. J. Sadoc and N. Rivier, Eur. Phys. J. B 12, 309 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  12. B. Kostant, Notices Am. Mater. Soc. 42, 959 (1995).

    MathSciNet  MATH  Google Scholar 

  13. E. Brown, Math. Mag. 77, 87 (2004).

    MathSciNet  MATH  Google Scholar 

  14. J. H. Conway and N. J. A. Sloane, Sphere Packing, Lattices, and Groups (Springer, New York, 1980; Mir, Moscow, 1990).

    Google Scholar 

  15. B. L. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry: Methods and Applications (Izd-vo URSS, Moscow, 2001), Vol. 2 [in Russian], p. 3.

    Google Scholar 

  16. J. Humphrey, Linear Algebraic Groups (Springer, Berlin, 1975; Nauka, Moscow, 1980).

    Book  Google Scholar 

  17. M. I. Samoylovich and A. L. Talis, Proc. XVIII Int. Conf. “High Technologies in the Industry of Russia’ (Technomash, Moscow, 2007), p. 394.

    Google Scholar 

  18. A. V. Morozov, K. Fortney, D. A. Gaykalova, et al., Nucleic Acids Res. 37, 4707 (2009).

    Article  Google Scholar 

  19. D. L. Nelson and M. M. Cox, Lehninger Principles of Biochemistry, 4th ed. (W.H. Freeman, New York, 2004).

    Google Scholar 

  20. V. I. Ivanov and L. E. Minchenkova, Mol. Biol. 28, 1258 (1994).

    Google Scholar 

  21. W. Zenger, Principles of Structural Organization of Nucleic Acids (Mir, Moscow, 1987) [in Russian].

    Google Scholar 

  22. S. P. Novikov, Sovrem. Probl. Mat. 4, 46 (2004).

    Article  Google Scholar 

  23. V. I. Arnold, Theory of Catastrophes (URSS, Moscow, 2004) [in Russian].

    Google Scholar 

  24. E. D. Sverdlov, Vestn. Ross. Akad. Nauk, 76, 707 (2006).

    Google Scholar 

  25. M. I. Samoylovich and A. L. Talis, ArXiv:1211.3686. 2012.

  26. M. I. Samoylovich and A. L. Talis, ArXiv:1211.6560. 2012; ArXiv:1303.4228. 2013.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Samoylovich.

Additional information

Original Russian Text © M.I. Samoylovich, A.L. Talis, 2013, published in Kristallografiya, 2013, Vol. 58, No. 5, pp. 639–651.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samoylovich, M.I., Talis, A.L. Structural regularities of helicoidally-like biopolymers in the framework of algebraic topology: II. α-Helix and DNA structures. Crystallogr. Rep. 58, 651–662 (2013). https://doi.org/10.1134/S106377451305009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377451305009X

Keywords

Navigation