Skip to main content
Log in

The vacuum component of the Universe (cosmological constant) should evolve

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The evolution of the vacuum component of the Universe is studied in both the quantum and classical regimes. Our Universe has emerged as a result of a tunneling process, beginning with an oscillating mode and passing on to a Friedmann mode, and it very probably had a high symmetry for the Planck parameters. In the first fractions of a second (the quantum regime), as it cooled, the vacuum component of the Universe lost its high degree of symmetry due to phase transitions; i.e., its positive energy density was subject to negative contributions from quantum field condensates (by 78 orders of magnitude). After the last (quark-hadron) phase transition, the vacuum energy “froze.” At this time (10−6 s), the vacuum energy density can be calculated using the formula of Zel’dovich and substituting the mean values of the pseudo-Goldstone boson (π-mesons) masses characterizing the chromodynamic vacuum. Chiral symmetrywas lost at that time. The dynamics of the equilibrium vacuum after its “hardening” is considered using the holographic principle. During the next 4 × 1017 s (the classical regime), the vacuum component of the Universe was reduced by 45 orders of magnitude due to the creation of new quantum states during its expansion. It is possible to solve the cosmological-constant problem using the holographic principle, since the 123 problematic orders of magnitude disappear in usual physical processes. The vacuum energy density is also calculated in the classical regime to a redshift of 1011 using a “cosmological calculator.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein, Sitzungsber. Preuss. Akad. Wiss., p. 142 (1917).

  2. S. Weinberg, Rev.Mod. Phys. 61, 1 (1989).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. S. Carroll, Living Rev. Relat. 4, 1 (2004); arXiv:astroph/0004075 (2000).

    ADS  Google Scholar 

  4. V. Sahni and A. Starobinsky, Int. J. Mod. Phys. D 9, 371 (2000).

    ADS  Google Scholar 

  5. P. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. T. Padmanabhan, Phys. Rep. 380, 235 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. R. Bousso, Gen. Relat. Gravit. 40, 607 (2008); arXiv:0708.4231 [astro-ph] (2007).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. J. A. Frieman, M. S. Turner, and D. Huterer, Ann. Rev. Astron. Astrophys. 46, 385 (2008).

    Article  ADS  Google Scholar 

  9. L. Marochnik, D. Usikov, and G. Vereshkov, arXiv:0811.4484 [gr-qc] (2008).

  10. V. V. Burdyuzha, Astron. Rep. 53, 381 (2009).

    Article  ADS  Google Scholar 

  11. V. V. Burdyuzha, Phys. Usp. 50, 819 (2010).

    Google Scholar 

  12. R. Peccei, J. Sola, and C. Wetterich, Phys. Lett. B 195, 183 (1987).

    Article  ADS  Google Scholar 

  13. D. Arnaudon, C. Bachas, V. Rivasseau, and P. Vegreville, Phys. Lett. B 195, 167 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  14. L. Abbott, Phys. Lett. B 150, 427 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  15. S. Hawking, Phys. Lett. B 134, 403 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  16. R. R. Caldwell, R. Dave, and P. J. Steinhard, Phys. Rev. Lett. 80, 1582 (1998).

    Article  ADS  Google Scholar 

  17. T. Banks, Nucl. Phys. B 249, 332 (1985); arXiv:hepth/0305206 (2003).

    Article  ADS  Google Scholar 

  18. S. Weinberg, Phys. Rev. Lett. 59, 2607 (1987).

    Article  ADS  Google Scholar 

  19. V. Rubakov, Phys. Rev. D 61, 061501 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  20. P. Steinhard and N. Turok, Science 312, 1180 (2006); arXiv:astro-ph/0605173 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  21. A. Vilenkin, in Universe or Multiverse, Ed. by B. J. Carr and Q. Mary (Cambridge Univ. Press, Cambridge, 2007), p. 163; arXiv:astro-ph/0407586 (2004).

    Google Scholar 

  22. J. Garriga and A. Vilenkin, Progr. Theor. Phys. Suppl. 163, 245 (2006); arXiv:hep-th/0508005 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  23. J. Polchinski, arXiv:hep-th/0603249 (2006).

  24. A. Linde, J. Cosmol. Astropart. Phys. 0701, 022 (2007); arXiv:hep-th/0611043 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  25. R. Bousso, R. Harnik, G. D. Kribs, and G. Perez, Phys. Rev. D 76, 043513 (2007); arXiv:hep-th/0702115 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  26. B. Feldstein, L. Hall, and T. Watari, Phys. Rev. D 72, 123506 (2005); arXiv:hep-th/0506235 (2005).

    Article  ADS  Google Scholar 

  27. E. Komatsu, J. Dunkley, M. R. Nolta, et al., Astrophys. J. Suppl. Ser. 180, 330 (2009); arXiv:0803.0547 [astro-ph] (2008).

    Article  ADS  Google Scholar 

  28. M. Hicken, W. M. Wood-Vasey, S. Blondin, et al., Astrophys. J. 700, 1097 (2009).

    Article  ADS  Google Scholar 

  29. V. Burdyuzha and G. Vereshkov, Astrophys. Space Sci. 305, 235 (2006).

    Article  ADS  MATH  Google Scholar 

  30. A. Dolgov, arXiv:hep-ph/0405089 (2004).

  31. V. Burdyuzha, G. Vereshkov, and J. Pacheco, arXiv:0801.0044 [gr-qc] (2008).

  32. V. Burdyuzha, O. Lalakulich, Yu. Ponomarev, and G. Vereshkov, Phys. Rev. D 55, 7340R (1997).

    Article  ADS  Google Scholar 

  33. E. Shuryak, Phys. Rep. 264, 357 (1996).

    Article  ADS  Google Scholar 

  34. Ya. B. Zel’dovich, JETP Lett. 6, 316 (1967).

    ADS  Google Scholar 

  35. N. S. Kardashev, Astron. Rep. 41, 715 (1997).

    ADS  Google Scholar 

  36. V. Burdyuzha, in Particles, Strings and Cosmology (PASCOS’98), Proceedings of the 6th International Symposium, Boston, USA, 22–29 March, 1998, Ed. by P. Nath (World Scientific, Pearland, TX, 1999), p. 101.

    Google Scholar 

  37. C. Balazs and I. Szapidi, arXiv:hep-th/0603133 (2006).

  38. W. Fischler and L. Susskind, arXiv:hep-ph/9806039 (1998).

  39. T. Jacobson, Phys. Rev. Lett. 75, 260 (1995).

    Article  ADS  Google Scholar 

  40. Ch. Eling, R. Guedens, and T. Jacobson, Phys. Rev. Lett. 96, 121301 (2006); arXiv:gr-qc/0602001 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  41. G.’ t Hooft, arXiv:gr-qc/9310026 (1993).

  42. S. Hawking, Commun.Math. Phys. 43, 199 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  43. J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).

    Article  MathSciNet  ADS  Google Scholar 

  44. E. Komatsu, K. M. Smith, J. Dunkley, et al., Astrophys. J. Suppl. Ser. 192, 18 (2011); arXiv:1001.4538 [astro-ph.CO] (2010).

    Article  ADS  Google Scholar 

  45. N. Wright, Publ. Astron. Soc. Pacif. 118, 1711 (2006).

    Article  ADS  Google Scholar 

  46. D. A. Howell, A. Conley, M. Della Valle, et al., arXiv:0903.1086 [astro-ph.SR] (2009).

  47. V. Burdyuzha, O. Lalakulich, Yu. Ponomarev, and G. Vereshkov, Astron. Astrophys. Trans. 23, 453 (2004).

    Article  ADS  Google Scholar 

  48. J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).

    MathSciNet  ADS  MATH  Google Scholar 

  49. E. Verlinde, J. High Energy Phys. 1104, 029 (2011); arXiv:1001.0785 [hep-th] (2010).

    Article  MathSciNet  ADS  Google Scholar 

  50. G. Wolschin, Conference Probes the Dark Side of the Universe, CERN Courier (March 2009).

  51. R. Caldwell and M. Kamionkowski, Ann. Rev. Nucl. Part. Sci. 59, 397 (2009).

    Article  ADS  Google Scholar 

  52. P. Serra, in Proceedings of the 45th Rencontres de Moriond, La Thuile, Italy, 2010 (in press); arXiv:1005.2415 [astro-ph.CO] (2010).

  53. M. Jamil, Phys. Lett. B 694, 284 (2011); arXiv:1010.0385 [hep-th] (2010).

    Article  ADS  Google Scholar 

  54. S. Dutta and R. J. Scherrer, Phys. Rev. D 82, 043526 (2010); arXiv:1004.3295 [astro-ph.CO] (2010).

    Article  ADS  Google Scholar 

  55. M. C. March, R. Trotta, L. Amendola, and D. Huterer, Mon. Not. R. Astron. Soc. 415, 143 (2011); arXiv:1101.1521 [astro-ph.CO] (2011).

    Article  ADS  Google Scholar 

  56. Miao Li, Xiao-Dong Li, and X. Zhang, Sci. Chin. Phys. Mech. Astron. 53, 1631 (2010); arXiv:0912.3988 [astro-ph.CO] (2009).

    Article  ADS  Google Scholar 

  57. A. A. Starobinsky, JETP Lett. 86, 157 (2007).

    Article  ADS  Google Scholar 

  58. E. Greewood, E. Halstead, R. Poltis, and D. Stojkovic, Phys. Rev. D 79, 103003 (2009); arXiv:0810.5343 [hep-ph] (2008).

    Article  ADS  Google Scholar 

  59. W. Zhao, Int. J. Mod. Phys. 18, 1331 (2009); arXiv:0810.5506 [gr-qc] (2008).

    ADS  MATH  Google Scholar 

  60. A. Cooney, S. DeDeo, and D. Psaltis, Phys. Rev. D 79, 044033 (2009); arXiv:0811.3635 [astro-ph] (2008).

    Article  ADS  Google Scholar 

  61. F. Klinkhamer and G. Volovik, Phys. Rev. D 79, 063527 (2009); arXiv:0811.4347 [gr-qc] (2008).

    Article  ADS  Google Scholar 

  62. D. Hooper and S. Dodelson, Astropart. Phys. 27, 113 (2007); arXiv:astro-ph/0512232 (2005).

    Article  ADS  Google Scholar 

  63. P. Zang, R. Bean, M. Liguori, and S. Dodelson, arXiv:0809.2836 [astro-ph] (2008).

  64. A. Kempf, Phys. Rev. Lett. 103, 231301 (2009); arXiv:0908.3061 [gr-qc] (2009).

    Article  ADS  Google Scholar 

  65. R. Banerjee and B. R. Majhi, Phys. Lett. B 69, 83 (2010); arXiv:1002.0985 [gr-qc] (2010).

    MathSciNet  ADS  Google Scholar 

  66. J. Makela, arXiv:1001.3808 [gr-qc] (2010).

  67. R. G. Cai, L. M. Cao, and N. Ohta, Phys. Rev. D 81, 06501 (2010); arXiv:1001.3470 [hep-th] (2010).

    Google Scholar 

  68. F. W. Shu and Y. Gong, Int. J. Mod. Phys. D 20, 553 (2011); arXiv:1001.3237 [gr-qc] (2010).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. T. Padmanabhan, Gen. Relat. Gravit. 42, 2743 (2010); arXiv:1001.3380 [gr-qc] (2010).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  70. G. F. Smoot, Int. J. Mod. Phys.D19, 2247 (2010).

    Google Scholar 

  71. A. D. Sakharov, Sov. Phys. Dokl. 12, 1040 (1967).

    ADS  Google Scholar 

  72. S. Khakshournia, Gravit. Cosmol. 16, 178 (2010).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Burdyuzha.

Additional information

Original Russian Text © V.V. Burdyuzha, 2012, published in Astronomicheskii Zhurnal, 2012, Vol. 89, No. 6, pp. 451–457.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burdyuzha, V.V. The vacuum component of the Universe (cosmological constant) should evolve. Astron. Rep. 56, 403–409 (2012). https://doi.org/10.1134/S1063772912050010

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772912050010

Keywords

Navigation