Skip to main content
Log in

Determining the parameters of massive protostellar clouds via radiative transfer modeling

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A one-dimensional method for reconstructing the structure of prestellar and protostellar clouds is presented. The method is based on radiative-transfer computations and a comparison of theoretical and observed intensity distributions at both millimeter and infrared wavelengths. The radiative transfer of dust emission is modeled for specified parameters of the density distribution, central star, and external background, and the theoretical distribution of the dust temperature inside the cloud is determined. The intensity distributions at millimeter and IR wavelengths are computed and quantitatively compared with observational data. The best-fit model parameters are determined using a genetic minimization algorithm, which makes it possible to reveal the ranges of parameter degeneracy as well. The method is illustrated by modeling the structure of two infrared dark clouds IRDC-320.27+029 (P2) and IRDC-321.73+005 (P2). The derived density and temperature distributions can be used to model the chemical structure and spectral maps in molecular lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Zinnecker and H. M. Yorke, Ann. Rev. Astron. Astrophys. 45, 481 (2007).

    Article  ADS  Google Scholar 

  2. M. Perault, A. Omont, G. Simon, et al., Astron. Astrophys. 315, 165 (1996).

    ADS  Google Scholar 

  3. M. P. Egan, R. F. Shipman, S. D. Price, et al., Astrophys. J. 494, 199 (1998).

    Article  ADS  Google Scholar 

  4. J. M. Rathborne, R. Simon, and J. M. Jackson, Astrophys. J. 662, 1082 (2007).

    Article  ADS  Google Scholar 

  5. R. Launhardt, D. Nutter, D. Ward-Thompson, et al., Astrophys. J. Suppl. Ser. 188, 139 (2010).

    Article  ADS  Google Scholar 

  6. J. F. Alves, C. J. Lada, and E. A. Lada, Nature 409, 159 (2001).

    Article  ADS  Google Scholar 

  7. T. Vasyunina, H. Linz, Th. Henning, et al., Astron. Astrophys. 499, 149 (2009).

    Article  ADS  Google Scholar 

  8. R. A. Benjamin, E. Churchwell, B. L. Babler, et al., Publ. Astron. Soc. Pacif. 115, 953 (2003).

    Article  ADS  Google Scholar 

  9. S. J. Carey, A. Noriega-Crespo, D. R. Mizuno, et al., Publ. Astron. Soc. Pacif. 121, 76 (2009).

    Article  ADS  Google Scholar 

  10. C. W. Ormel, R. F. Shipman, V. Ossenkopf, and F. P. Helmich, Astron. Astrophys. 439, 613 (2005).

    Article  ADS  Google Scholar 

  11. P. Charbonneau, Astroph. J. Suppl. Ser. 101, 309 (1995).

    Article  ADS  Google Scholar 

  12. A. Baier, F. Kerschbaum, and T. Lebzelter, Astron. Astrophys. 516, 45 (2010).

    Article  ADS  Google Scholar 

  13. C. Brinch, M. R. Hogerheijde, and S. Richling, Astron. Astrophys. 489, 607 (2008).

    Article  ADS  Google Scholar 

  14. H. Beuther and J. Steinacker, Astrophys. J. 656, 85 (2007).

    Article  ADS  Google Scholar 

  15. Th. Robitaille, B. A. Whitney, R. Indebetouw, et al., Astrophys. J. Suppl. Ser. 167, 256 (2006).

    Article  ADS  Google Scholar 

  16. N. G. Bochkarev, Fundamentals of Physics of Interstellar Media (URSS, Moscow, 2009) [in Russian].

    Google Scholar 

  17. M. Tafalla, P. C. Myers, P. Caselli, et al., Astrophys. J. 569, 815 (2002).

    Article  ADS  Google Scholar 

  18. B. T. Draine and A. Li, Astrophys. J. 657, 810 (2007).

    Article  ADS  Google Scholar 

  19. Ya. N. Pavlyuchenkov and B.M. Shustov, Astron.Zh. 81, 348 (2004) [Astron. Rep. 48, 315 (2004)].

    Google Scholar 

  20. J. S. Mathis, W. Rumpl, and K. H. Nordsieck, Astrophys. J. 217, 425 (1977).

    Article  ADS  Google Scholar 

  21. B. A. Whitney, R. Indebetouw, J. E. Bjorkman, and K. J. S. Wood, Astrophys. J. 617, 1177 (2004).

    Article  ADS  Google Scholar 

  22. B. T. Draine and A. Li, Astrophys. J. 551, 807 (2001).

    Article  ADS  Google Scholar 

  23. P. F. Goldsmith, Astrophys. J. 557, 736 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Ya.N. Pavlyuchenkov, D.S. Wiebe, A.M. Fateeva, T.S. Vasyunina, 2011, published in Astronomicheskii Zhurnal, 2011, Vol. 88, No. 1, pp. 3–15.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlyuchenkov, Y.N., Wiebe, D.S., Fateeva, A.M. et al. Determining the parameters of massive protostellar clouds via radiative transfer modeling. Astron. Rep. 55, 1–12 (2011). https://doi.org/10.1134/S1063772911010057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772911010057

Keywords

Navigation