Skip to main content
Log in

Radio-induced activity in galaxy pairs

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The close proximity of a radio-loud active galactic nucleus (AGN) can trigger star formation in nearby objects containing gas if they are hit by a radio jet emerging from the active nucleus (as is observed, for example, in the case of Minkowski’s Object). The predicted frequency of such events is modest for close pairs of galaxies—of the order of several percent of all close (with separations of the order of several tens of parsec) pairs containing a radio AGN. A statistical study of this effect is carried out using the SDSS and FIRST surveys, by searching for spatially close pairs (projected separations <150 kpc, relative radial velocities <600 km/s) containing AGNs with radio jets. The frequency of galaxies with bursts of star formation, f SF, and active nuclei f AGN, in pairs either containing or not containing an AGN with radio jets are evaluated as functions of the separation of the galaxies in the pair. It is concluded that (1) the predicted effect should be of the order of 5%, falling off with increasing separation between the galaxies in the pair; (2) the observed values of f SF and f AGN and their dependences on the galaxy separation are consistent withmodel predictions, but the large uncertainties associated with the limited size of the studied sample hinders firm conclusions about the existence of radio-induced activity in close galaxy pairs; (3) further investigations using a larger volume of observational material are required, for example, using only photometric redshifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gopal-Krishna, P. J. Wiita, and M. A. Ostermna, in Active Galactic Nuclei: from Central Engine to Host Galaxy, Ed. by S. Collin, F. Combes, and I. Shlosman, ASP Conf. Ser. 290, 319 (2002).

  2. S.W. Allen, R. J. H. Dunn, A. C. Fabian, et al., Mon. Not. R. Astron. Soc. 372, 21 (1999).

    Article  ADS  Google Scholar 

  3. C. S. Reynolds, S. Heinz, and M. C. Begelman, Mon. Not. R. Astron. Soc. 332, 271 (2002).

    Article  ADS  Google Scholar 

  4. E. Churazov, M. Brüggen, C. R. Kaiser, et al., Astrophys. J. 554, 261 (2001).

    Article  ADS  Google Scholar 

  5. M. Umemura, in Co-evolution of Black Holes and Galaxies, Ed. by L. C. Ho, Carnegie Observ. Astrophys. Ser. (Carnegie Observatories, Pasadena, 2004).

    Google Scholar 

  6. A. King, Astrophys. J. 635, L121 (2005).

    Article  ADS  Google Scholar 

  7. E. Churazov, S. Sazonov, R. Sunyaev, et al., Mon. Not. R. Astron. Soc. 363, L91 (2005).

    Article  ADS  Google Scholar 

  8. D. J. Saikia, C. Konar, and V. K. Kulkarni, Mon. Not. R. Astron. Soc. 366, 1391 (2006).

    ADS  Google Scholar 

  9. S. Heinz and E. Churazov, Astrophys. J. 634, L141 (2005).

    Article  ADS  Google Scholar 

  10. R. J. H. Dunn, A. C. Fabian, and G. B. Taylor, Mon. Not. R. Astron. Soc. 364, 1343 (2005).

    Article  ADS  Google Scholar 

  11. B. R. McNamara, L. Birzan, D. A. Rafferty, et al., in Extragalactic Jets: Theory and Observation from Radio to Gamma Ray, Ed. by T. A. Rector and D. S. De Young, ASP Conf. Ser. 386, 311 (2008).

  12. J. P. Brodie, S. Bowyer, and P. McCarthy, Astrophys. J. 293, L59 (1985).

    Article  ADS  Google Scholar 

  13. W. van Breugel, A. V. Filippenko, T. Heckman, and G. Miley, Astrophys. J. 293, 83 (1985).

    Article  ADS  Google Scholar 

  14. R. Minkowski, Publ. Astron. Soc. Pacif. 70, 143 (1958).

    Article  ADS  Google Scholar 

  15. S. M. Simkin, Astrophys. J. 204, 251 (1976).

    Article  ADS  Google Scholar 

  16. P. C. Fragile, S. D. Murray, P. Anninos, and W. van Breugel, Astrophys. J. 604, 74 (2004).

    Article  ADS  Google Scholar 

  17. S. Croft, W. van Breugel, W. De Vries, et al., Astrophys. J. 647, 1040 (2006).

    Article  ADS  Google Scholar 

  18. K. C. Chambers, G. K. Miley, and W. van Breugel, Nature 329, 604 (1987).

    Article  ADS  Google Scholar 

  19. P. J. McCarthy, W. van Breugel, H. Spinrad, and S. Djorgovski, Astrophys. J. 321, L29 (1987).

    Article  ADS  Google Scholar 

  20. M. J. Rees, Mon. Not. R. Astron. Soc. 239, 1P (1989).

    ADS  Google Scholar 

  21. A. Dey, W. van Breugel, W. D. Vacca, and R. Antonucci, Astrophys. J. 490, 698 (1997).

    Article  ADS  Google Scholar 

  22. D. A. Evans, W.-F. Fong, M. J. Hardcastle, et al., Astrophys. J. 675, 1057 (2008).

    Article  ADS  Google Scholar 

  23. T. A. Oosterloo and R. Morganti, Astron. Astrophys. 429, 469 (2005).

    Article  ADS  Google Scholar 

  24. D. G. York, G. Donald, and J. Adelman, Astron. J. 120, 1579 (2000).

    Article  ADS  Google Scholar 

  25. K. N. Abazajian, J. K. Adelman-McCarthy, and M. A. Agueros, Astrophys. J. Suppl. Ser. 182, 543 (2009).

    Article  ADS  Google Scholar 

  26. C. Stoughton, R. Lupton, M. Bernardi, et al., Astron. J. 123, 485 (2002).

    Article  ADS  Google Scholar 

  27. M. R. Blanton, J. Dalcanton, D. Eisenstein, et al., Astron. J. 121, 2358 (2001).

    Article  ADS  Google Scholar 

  28. M. A. Strauss, D. H. Weinberg, and R. H. Lupton, Astron. J. 124, 1810 (2002).

    Article  ADS  Google Scholar 

  29. D. R. Patton and J. E. Atfield, Astrophys. J. 685, 235 (2008).

    Article  ADS  Google Scholar 

  30. D. R. Patton, C. J. Pritchet, R. G. Carlberg, Astrophys. J. 565, 208 (2002).

    Article  ADS  Google Scholar 

  31. H. R. De Ruiter, P. Parma, A. Capetti, et al., Astron. Astrophys. 439, 487 (2005).

    Article  ADS  Google Scholar 

  32. I. Strateva, Z. Ivezic, and G. R. Knapp, Astron. J. 122, 1861 (2001).

    Article  ADS  Google Scholar 

  33. J. A. Baldwin, M. M. Phillips, and R. Terlevich, Publ. Astron. Soc. Pacif. 93, 5 (1981).

    Article  ADS  Google Scholar 

  34. C. J. Miller, R. C. Nichol, P. L. Gomez, et al., Astrophys. J. 597, 142 (2003).

    Article  ADS  Google Scholar 

  35. L. J. Kewley, M. A. Dopita, R. S. Sutherland, et al., Astrophys. J. 566, 121 (2001).

    Article  ADS  Google Scholar 

  36. G. Kauffmann, T. M. Heckman, and C. Tremonti, Mon. Not. R. Astron. Soc. 346, 1055 (2003).

    Article  ADS  Google Scholar 

  37. P. N. Best, G. Kauffmann, T. M. Heckman, and Z. Ivezic, Mon. Not. R. Astron. Soc. 362, 9 (2005).

    Article  ADS  Google Scholar 

  38. G. Kauffmann, T. Heckman, S. White, et al., Mon. Not. R. Astron. Soc. 341, 33 (2003).

    Article  ADS  Google Scholar 

  39. M. L. Balogh, S. Morris, and H. Yee, Astrophys. J. 527, 54 (1999).

    Article  ADS  Google Scholar 

  40. R. H. Becker, R. L. White, and D. J. Helfand, in Astronomical Data Analysis Software and Systems III, Ed. by D. R. Crabtree, R. J. Hanisch, and J. Barnes, ASP Conf. Ser. 61, 165 (1994).

  41. A. M. Hopkins, C. J. Miller, R. C. Nichol, et al., Astrophys. J. 599, 971 (2003)

    Article  ADS  Google Scholar 

  42. J. Brinchmann, S. Charlot, S. D. M. White, et al., Mon. Not. R. Astron. Soc. 351, 1151 (2004).

    Article  ADS  Google Scholar 

  43. E. F. Bell, D.H. McIntosh, N. Katz, and M. D. Weinberg, Astrophys. J., Suppl. Ser. 149, 289 (2003).

    Article  ADS  Google Scholar 

  44. K. I. Kellermann, R. Sramek, M. Schmidt, et al., Astron. J. 98, 1195 (1989).

    Article  ADS  Google Scholar 

  45. H. R. Schmitt, in IAU Symposium 222: The Interplay among Black Holes, Stars and ISM in Galactic Nuclei, Ed. by T. Storchi-Bergmann, L. L. Ho, and H. R. Schmidtt (Cambridge, 2004), p. 395.

  46. S. L. Ellison, D. R. Patton, L. Simard, and A.W. Mc-Connachie, Astron. J. 135, 1877 (2008).

    Article  ADS  Google Scholar 

  47. M. S. Alonso, P. B. Tissera, G. Coldwell, and D. G. Lambas, Mon. Not. R. Astron. Soc. 352, 1081 (2004).

    Article  ADS  Google Scholar 

  48. P. N. Best, G. Kauffmann, T. M. Heckman, et al., Mon. Not. R. Astron. Soc. 362, 25 (2005).

    Article  ADS  Google Scholar 

  49. S. S. Shabala, S. Ash, J.M. Alexander, and J.M. Riley, Mon. Not. R. Astron. Soc. 388, 625 (2008).

    Article  ADS  Google Scholar 

  50. D. F. Woods and M. J. Geller, Astron. J. 134, 537 (2007).

    Article  Google Scholar 

  51. A. Dressler, Astrophys. J. 236, 351 (1980).

    Article  ADS  Google Scholar 

  52. G. Kauffmann, S. D.M. White, T.M. Heckman, et al., Mon. Not. R. Astron. Soc. 353, 713 (2004).

    Article  ADS  Google Scholar 

  53. B. L. Fanaroff and J. M. Riley, Mon. Not. R. Astron. Soc. 167, 31 (1974).

    ADS  Google Scholar 

  54. E. L. Zirbel, Astrophys. J. 476, 489 (1997).

    Article  ADS  Google Scholar 

  55. J. J. Condon, W. D. Cotton, E. W. Greisen, et al., Astrophys. J. 115, 1693 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.N. Pashchenko, V.M. Vitrishchak, 2010, published in Astronomicheskiĭ Zhurnal, 2010, Vol. 87, No. 2, pp. 115–131.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pashchenko, I.N., Vitrishchak, V.M. Radio-induced activity in galaxy pairs. Astron. Rep. 54, 97–111 (2010). https://doi.org/10.1134/S1063772910020010

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772910020010

Keywords

Navigation