Skip to main content
Log in

The space distribution of quasars

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The space distribution of quasars from the 2dF and SDSS DR5 catalogs in the redshift interval 0.3 < z < 1.9 is analyzed. The distributions of quasars in both catalogs are found to have the following common features: (1) when the distance between the nearest objects exceeds 35h −1 Mpc (where h = H 0/100 km/s Mpc is the dimensionless Hubble constant), the distribution of quasars virtually coincides with a uniform three-dimensional distribution; (2) on scale lengths of (5–35)h −1 Mpc, the fractal dimension of the quasar distribution is 2.3; (3) the amplitude of quasar clustering and the average distance between neighboring quasars increase slowly with z (at a significance level of about 1.5σ). Twenty large groups of quasars with sizes of (50–150)h −1 Mpc can be identified in the 2dF catalog at the 4σ significance level. These groups are incipient superclusters (two earlier known groups are confirmed). The space density of these groups is of the order of 7h 3 Gpc−3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Croom, R. Smith, B. Boyle, et al., Mon. Not. R. Astron. Soc. 349, 1397 (2004).

    Article  ADS  Google Scholar 

  2. D. Shnider, X. Fan, P. Hall, et al., Astron. J. 126, 2579 (2003).

    Article  ADS  Google Scholar 

  3. A. D. Myers, R. J. Brunner, R. C. Nichol, et al., astro-ph/0606074 (2006).

  4. C. Porciani, M. Naglochetti, and P. Norberg, Mon. Not. R. Astron. Soc. 355, 1010 (2004).

    Article  ADS  Google Scholar 

  5. Y. Shen, M. A. Strauss, M. Oguri, et al., astro-ph/0702214 (2007).

  6. B. V. Komberg, A. V. Kravtsov, and V. N. Lukash, Astron. Astropys. 286, L19 (1994).

    ADS  Google Scholar 

  7. S. Croom, B. Boyle, and T. Shanks, Mon. Not. R. Astron. Soc. 356, 415 (2005).

    Article  ADS  Google Scholar 

  8. K. Yahata, Y. Suto, and I. Kayo, Publ. Astron. Soc. Jpn. 57, 529 (2005).

    ADS  Google Scholar 

  9. R. Clowes, in The New Era of Wide Field Astronomy, Ed. by R. Clowes, A. Adamson, and G. Bromage (Astron. Soc. Pac., San Francisco, 2001), Astron. Soc. Pac. Conf. Ser. 232, 108 (2001).

    Google Scholar 

  10. B. V. Komberg, A. V. Kravtsov, and V. N. Lukash, Mon. Not. R. Astron. Soc. 282, 713 (1996).

    ADS  Google Scholar 

  11. G. Williger, L. E. Campusano, and R. G. Clowes, in The New Era of Wide Field Astronomy, Ed. by R. Clowes, A. Adamson, and G. Bromage (Astron. Soc. Pac., San Francisco, 2001), Astron. Soc. Pac. Conf. Ser. 232, 114 (2001).

    Google Scholar 

  12. J. Barrow, S. Bhavsar, and D. Sonoda, Mon. Not. R. Astron. Soc. 216, 17 (1985).

    ADS  Google Scholar 

  13. G. T. Richards, X. Fan, H. Newberg, et al., Astron. J. 123, 2945 (2002).

    Article  ADS  Google Scholar 

  14. C. Stoughton, R. Lupton, M. Bernardi, et al., Astron. J. 123, 485 (2002).

    Article  ADS  Google Scholar 

  15. D. E. Vanden Berk, D. Shnider, G. T. Richards, et al., Astron. J. 129, 2047 (2005).

    Article  ADS  Google Scholar 

  16. R. Becker, X. Fan, R. White, et al., Astron. J. 122, 2850 (2001).

    Article  ADS  Google Scholar 

  17. W. Voges, B. Aschenbach, T. Boller, et al., Astron. Astrophys. 349, 389 (1999).

    ADS  Google Scholar 

  18. M. Blanton, H. Lin, R. Lupton, et al., Astron. J. 125, 2276 (2003).

    Article  ADS  Google Scholar 

  19. G. T. Richards, D. E. Vanden Berk, T. Reichard, et al., Astron. J. 124, 1 (2002).

    Article  ADS  Google Scholar 

  20. Z. Haiman and L. Hui, Astrophys. J. 547, 27 (2001).

    Article  ADS  Google Scholar 

  21. A. G. Doroshkevich, D. Tucker, S. Allam, and M. Way, Astron. Astrophys. 418, 7 (2004).

    Article  MATH  ADS  Google Scholar 

  22. M. J. Graham, R. G. Clowes, and L. E. Campusano, Mon. Not. R. Astron. Soc. 275, 790 (1995).

    ADS  Google Scholar 

  23. C. Dussert, G. Rasigni, M. Rasigni, and J. Palmari, Phys. Rev. B 34, 3528 (1986).

    Article  ADS  Google Scholar 

  24. N. Kaiser, Mon. Not. R. Astron. Soc. 227, 1 (1987).

    ADS  Google Scholar 

  25. O. Buryak and A. G. Doroshkevich, Astron. Astrophys. 306, 1 (1996).

    ADS  Google Scholar 

  26. M. Demianski and A. G. Doroshkevich, Astron. Astrophys. 422, 423 (2004).

    Article  MATH  ADS  Google Scholar 

  27. E. Rollinde, R. Srianand, T. Theuns, et al., Mon. Not. R. Astron. Soc. 361, 1015 (2005).

    Article  ADS  Google Scholar 

  28. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipies in Fortran 77: The Art of Scientific Computing (Press Syndicate of the Univ. of Cambridge, Cambridge, 2001).

    Google Scholar 

  29. A. Coil, J. Hennawi, J. Newman, et al., Astrophys. J. 654, 115 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.V. Pilipenko, 2007, published in Astronomicheskiĭ Zhurnal, 2007, Vol. 84, No. 10, pp. 910–919.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilipenko, S.V. The space distribution of quasars. Astron. Rep. 51, 820–829 (2007). https://doi.org/10.1134/S106377290710006X

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377290710006X

PACS numbers

Navigation