Skip to main content
Log in

A Comparison of the Composition of Wax Ester Molecular Species of Different Coral Groups (Subclasses Hexacorallia and Octocorallia)

  • Biochemistry
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

Wax esters, which are esters of fatty alcohols and fatty acids (FAs), are one of the main classes of reserve lipids in all coral species. The chemical structures and the content of wax ester molecular species were determined for the first time in nine coral species from three taxonomic groups: symbiotic reef-building corals, (Hexacorallia subclasses), symbiotic soft coral alcyonarians, and asymbiotic soft coral gorgonians (Octocorallia subclasses) collected in the South China Sea (Vietnam). Our comparison of these groups showed that the absence of symbiotic microalgae (zooxanthellae) and the exoskeleton affects the profile of molecular species of wax esters considerably. The main components of wax esters of all corals were cetyl palmitate (16:0-16:0) and other saturated wax esters containing 30, 34, and 36 carbon atoms. The content of unsaturated molecular species 6:0–16:1, 16:0–18:1, and 16:0–20:1 in wax esters of symbiotic soft corals (alcyonarians) was greater than that in wax esters of reef-building corals. In contrast to symbiotic coral species, wax esters of asymbiotic soft corals, namely azooxanthellate gorgonians, contained a considerable amount of long-chain molecular species (C37-C41) with an odd number of carbon atoms. The presence of such molecular species indicates that asymbiotic gorgonians may use bacterial FAs in biosynthesis of their own wax esters. This observation confirms our hypothesis that bacterial community is important for maintaining the energy balance of azooxanthellate corals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Imbs, A.B., Fatty acids and other lipids of corals: composition, distribution and biosynthesis, Russ. J. Mar. Biol., 2013, vol. 39, no. 3, pp. 153–168.

    Article  CAS  Google Scholar 

  2. Al-Lihaibi, S.S., Al-Sofyani, A., Niaz, G.R., et al., Long-chain wax esters and diphenylamine in fire coral Millepora dichotoma and Millepora platyphylla from Saudi Red Sea Coast, Sci. Mar., 2002, vol. 66, no. 2, pp. 95–101.

    Article  CAS  Google Scholar 

  3. Baptista, M., Lopes, V.M., Pimentel, M.S., et al., Temporal fatty acid dynamics of the octocoral Veretillum cynomorium, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2012, vol. 161, no. 2, pp. 178–187.

    Article  CAS  Google Scholar 

  4. Beleneva, I.A., Dautova, T.I., and Zhukova, N.V., Characterization of communities of heterotrophic bacteria associated with healthy and diseased corals in Nha Trang Bay (Vietnam), Microbiology, 2005, vol. 74, no. 5, pp. 579–587.

    Article  CAS  Google Scholar 

  5. Benson, A.A. and Muscatine, L., Wax in coral mucus: energy transfer from corals to reef fishes, Limnol. Oceanogr., 1974, vol. 19, pp. 810–814.

    Article  Google Scholar 

  6. Brondz, I., Development of fatty acid analysis by highperformance liquid chromatography, gas chromatography, and related techniques, Anal. Chim. Acta, 2002, vol. 465, no. 1–2, pp. 1–37.

    Article  CAS  Google Scholar 

  7. Chen, H.-K., Wang, L.-H., Chen, W.-N.U., et al., Coral lipid bodies as the relay center interconnecting diel-dependent lipidomic changes in different cellular compartments, Sci. Rep., 2017, vol. 7, Art. no. 3244.

    Google Scholar 

  8. Chen, H.-K., Song, S.-N., Wang, L.-H., et al., Compartmental comparison of major lipid species in a coral-Symbiodinium endosymbiosis: evidence that the coral host regulates lipogenesis of its cytosolic lipid bodies, PLoS One, 2015, vol. 10, p. 7.

    CAS  Google Scholar 

  9. Crossland, C.J., Barnes, D.J., and Borowitzka, M.A., Diurnal lipid and mucus production in the staghorn coral Acropora acuminata, Mar. Biol., 1980, vol. 60, pp. 81–90.

    Article  CAS  Google Scholar 

  10. Dalsgaard, J., John, M.S., Kattner, G., et al., Fatty acid trophic markers in the pelagic marine environment, Adv. Mar. Biol., 2003, vol. 46, pp. 225–340.

    Article  PubMed  Google Scholar 

  11. Dodds, L.A., Black, K.D., Orr, H., and Roberts, J.M., Lipid biomarkers reveal geographical differences in food supply to the cold-water coral Lophelia pertusa (Scleractinia), Mar. Ecol.: Progr. Ser., 2009, vol. 397, pp. 113–124.

    Google Scholar 

  12. Fleury, B.G., Coll, J.C., Sammarco, P.W., et al., Complementary (secondary) metabolites in an octocoral competing with a scleractinian coral: Effects of varying nutrient regimes, J. Exp. Mar. Biol. Ecol., 2004, vol. 303, pp. 115–131.

    Article  CAS  Google Scholar 

  13. Folch, J.F., Lees, M., and Sloane Stanley, G.H., A simple method for the isolation and purification of total lipids from animal tissue, J. Biol. Chem., 1957, vol. 226, pp. 497–509.

    CAS  PubMed  Google Scholar 

  14. Grant, A.J., Remond, M., and Hinde, R., Low molecular-weight factor from Plesiastrea versipora (Scleractinia) that modifies release and glycerol metabolism of isolated symbiotic algae, Mar. Biol., 1998, vol. 130, pp. 553–557.

    Article  CAS  Google Scholar 

  15. Grottoli, A.G., Rodrigues, L.J., and Juarez, C., Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event, Mar. Biol., 2004, vol. 145, pp. 621–631.

    Article  CAS  Google Scholar 

  16. Hamoutene, D., Puestow, T., Miller-Banoub, J., and Wareham, V., Main lipid classes in some species of deep-sea corals in the Newfoundland and Labrador region (Northwest Atlantic Ocean), Coral Reefs, 2008, vol. 27, no. 1, pp. 237–246.

    Article  Google Scholar 

  17. Harland, A.D., Davies, P.S., and Fixter, L.M., Lipid content of some Caribbean corals in relation to depth and light, Mar. Biol., 1992, vol. 113, pp. 357–361.

    Article  CAS  Google Scholar 

  18. Harland, A.D., Fixter, L.M., Davies, P.S., and Anderson, R.A., Distribution of lipids between the zooxanthellae and animal compartment in the symbiotic sea anemone Anemonia viridis: wax esters, triglycerides and fatty acids, Mar. Biol., 1991, vol. 110, pp. 13–19.

    Article  CAS  Google Scholar 

  19. Harland, A.D., Navarro, J.C., Davies, P.S., and Fixter, L.M., Lipids of some Caribbean and Red Sea corals: Total lipid, wax esters, triglycerides and fatty acids, Mar. Biol., 1993, vol. 117, no. 1, pp. 113–117.

    Article  CAS  Google Scholar 

  20. Hill’manning, D.N. and Blanquet, R.S., Lipid biosynthesis in warm- and cold-acclimatized sea anemones, Metridium senile (L.), J. Exp. Mar. Biol. Ecol., 1980, vol. 48, no. 2, pp. 113–121.

    Article  Google Scholar 

  21. Imbs, A.B., Demina, O.A., and Demidkova, D.A., Lipid class and fatty acid composition of the boreal soft coral Gersemia rubiformis, Lipids, 2006, vol. 41, no. 7, pp. 721–725.

    Article  CAS  PubMed  Google Scholar 

  22. Imbs, A.B., Latyshev, N.A., Zhukova, N.V., et al. Comparison of fatty acid compositions of azooxanthellate Dendronephthya and zooxanthellate soft coral species, Comp. Biochem. Physiol. B, 2007, vol. 148, pp. 314–321.

    Article  PubMed  Google Scholar 

  23. Joseph, J.D., Lipid composition of marine and estuarine invertebrates: Porifera and Cnidaria, Prog. Lipid Res., 1979, vol. 18, pp. 1–30.

    Article  CAS  PubMed  Google Scholar 

  24. Kaneda, T., Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance, Microbiol. Rev., 1991, vol. 55, no. 2, pp. 288–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, Zhu-Jin, Li, Jian-Xiong, and Wu, Hou-Ming, A study on chemical constituents of South China Sea soft coral Sinularia microclavate, Chin. J. Org. Chem., 1990, vol. 10, no. 3, pp. 277–281.

    CAS  Google Scholar 

  26. Luo, Y.J., Wang, L.H., Chen, W.N.U., et al., Ratiometric imaging of gastrodermal lipid bodies in coraldinoflagellate endosymbiosis, Coral Reefs, 2009, vol. 28, no. 1, pp. 289–301.

    Article  Google Scholar 

  27. Meyers, P.A., Polyunsaturated fatty acids in coral: indicators of nutritional sources, Mar. Biol. Lett., 1979, vol. 1, pp. 69–75.

    CAS  Google Scholar 

  28. Muscatine, L., Glycerol excretion by symbiotic algae from corals and Tridacna and its control by the host, Science, 1967, vol. 156, no. 3774, pp. 516–519.

    Article  CAS  PubMed  Google Scholar 

  29. Oku, H., Yamashiro, H., Onaga, K., et al., Seasonal changes in the content and composition of lipids in the coral Goniastrea aspera, Coral Reefs, 2003, vol. 22, pp. 83–85.

    Google Scholar 

  30. Pasby, B.F., A characterization of the lipids of the organisms which make up the main bulk of coral reef with particular emphasis on the hydrocarbons, Ph. D. Thesis, College Station: Texas A&M Univ., 1965, p. 149.

    Google Scholar 

  31. Patton, J.S., Abraham, S., and Benson, A.A., Lipogenesis in the intact coral Pocillopora capitata and its isolated zooxanthellae: evidence for a light-driven carbon cycle between symbiont and host, Mar. Biol., 1977, vol. 44, no. 3, pp. 235–247.

    Article  CAS  Google Scholar 

  32. Patton, J.S. and Burris, J.E., Lipid synthesis and extrusion by freshly isolated zooxanthellae (symbiotic algae), Mar. Biol., 1983, vol. 75, pp. 131–136.

    Article  CAS  Google Scholar 

  33. Rohwer, F., Breitbart, M., Jara, J., et al., Diversity of bacteria associated with the Caribbean coral Montastraea franksi, Coral Reefs, 2001, vol. 20, no. 1, pp. 85–91.

    Article  Google Scholar 

  34. Spalding, M.D. and Grenfell, A.M., New estimates of global and regional coral reef areas, Coral Reefs, 1997, vol. 16, pp. 225–230.

    Article  Google Scholar 

  35. Urbanova, K., Vrkoslav, V., Valterova, I., et al., Structural characterization of wax esters by electron ionization mass spectrometry, J. Lipid Res., 2011, vol. 53, no. 1, pp. 204–213.

    Article  PubMed  Google Scholar 

  36. Yamashiro, H., Oku, H., Higa, H., Chinen, I., and Sakai, K., Composition of lipids, fatty acids and sterols in Okinawan corals, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 1999, vol. 122, no. 4, pp. 397–407.

    Article  Google Scholar 

  37. Yamashiro, H., Oku, H., Onaga, K., et al., Coral tumors store reduced level of lipids, J. Exp. Mar. Biol. Ecol., 2001, vol. 265, pp. 171–179.

    Article  CAS  Google Scholar 

  38. Yamashiro, H., Oku, H., and Onaga, K., Effect of bleaching on lipid content and composition of Okinawan corals, Fish. Sci., 2005, vol. 71, no. 2, pp. 448–453.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Bosh.

Additional information

Original Russian Text © T.V. Bosh, P.Q. Long, 2017, published in Biologiya Morya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosh, T.V., Long, P.Q. A Comparison of the Composition of Wax Ester Molecular Species of Different Coral Groups (Subclasses Hexacorallia and Octocorallia). Russ J Mar Biol 43, 471–478 (2017). https://doi.org/10.1134/S1063074017060049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074017060049

Keywords

Navigation