Skip to main content
Log in

Fatty acids and other lipids of corals: Composition, distribution, and biosynthesis

  • Review
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

This paper reviews the literature data on the composition, structure, and distribution of the main lipid classes and their fatty acids in reef-building and soft corals and in hydrocorals of the genus Millepora. The review presents information about more than 150 coral species from tropical and cold waters of the World Ocean, as well as data on the influence of environmental factors on the lipid compositions of corals. The possible pathways of polyunsaturated fatty acid biosynthesis in corals are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vysotskii, M.V., Popkov, A.A. and Svetashev, V.I., Tetracosapentaenic acid (24:5w6) in lipids of marine coelenterates, Bioorg. Khim., 1990, vol. 16, no. 2, pp. 250–253.

    CAS  Google Scholar 

  2. Vysotskii, M.V. and Svetashev, V.I., Identification of of tetracosahexaenic acid (24:6w3) in lipids of marine coelenterates, Bioorg. Khim., 1989, vol. 15, no. 8, pp. 1133–1136.

    CAS  Google Scholar 

  3. Imbs, A.B., Prostaglandins and oxylipins of corals, Russ. J. Mar. Biol., 2011, vol. 37, no. 5, pp. 325–334.

    Article  CAS  Google Scholar 

  4. Imbs, A.B., Dautov S. Sh., and Latyshev N.A., The level of maturation of gonads and eicosanoids of the soft coral Gersemia rubiformis, Zh. Evol. Biokhim. Fiziol., 1989, vol. 25, no. 4, pp. 443–447.

    CAS  Google Scholar 

  5. Imbs, A.B. and Dautova, T.N., Use of lipids for chemotaxonomy of octocorals (Cnidaria: Alcvonaria), Russ. J. Mar. Biol., 2008, vol. 34, no. 3, pp. 174–178.

    Article  CAS  Google Scholar 

  6. Imbs, A.B., Luu, H.V., and Pham, L.Q., Intra- and interspecific variability of fatty acid composition of soft corals, Russ. J. Mar. Biol., 2007, vol. 33, no. 1, pp. 67–70.

    Article  CAS  Google Scholar 

  7. Imbs, A.B., Yakovleva, I.M., Latyshev, N.A., and Pham, L.Q., Biosynthesis of polyunsaturated fatty acids in zooxanthellae and polyps of corals, Russ. J. Mar. Biol., 2010, vol. 36, no. 6, pp. 445–450.

    Article  Google Scholar 

  8. Kostetskii, E.Ya., The phospholipid composition of sponges, coelenterates, and free-swimming marine worms, Sov. J. Mar. Biol., 1984, vol. 10, no. 5, pp. 287–293.

    Google Scholar 

  9. Lam Ngok Cham, Nguyen Kim Hung, Stekhov, V.B., and Svetashev, V.I., Phospholipids and fatty acids of gorgonian corals, Sov. J. Mar. Biol., 1981, vol. 7, no. 6, pp. 366–369.

    Google Scholar 

  10. Latyshev, N.A., Nguen Kim Hung, To T’uet Nga, and Svetashev, V.I., Composition and seasonal fluctuations of alcyonarian phospholipids, Sov. J. Mar. Biol., 1986, vol. 12, no. 3, pp. 178–182.

    Google Scholar 

  11. Al Lihaibi, S.S., Al Sofyani, A.A., and Niaz, G.R., Chemical composition of corals in Saudi Red Sea Coast, Ocean. Acta, 1998, vol. 21, no. 3, pp. 495–501.

    Article  Google Scholar 

  12. Al Lihaibi, S.S., Al Sofyani, A., Niaz, G.R., et al., Long-chain wax esters and diphenylamine in fire coral Millepora dichotoma and Millepora platyphylla from Saudi Red Sea Coast, Sci. Mar., 2002, vol. 66, pp. 95–101.

    Google Scholar 

  13. Al-Moghrabi, S., Allemand, D., Couret, J.M., and Jaubert, J., Fatty acids of the scleractinian coral Galaxea fascicularis—effect of light and feeding, J. Comp. Physiol., Ser. B, 1995, vol. 165, pp. 183–192.

    Google Scholar 

  14. Anthony, K.R.N., Connolly, S.R., and Hoegh-Guldberg, O., Bleaching, energetics, and coral mortality risk: effects of temperature, light, and sediment regime, Limnol. Oceanogr., 2007, vol. 52, pp. 716–726.

    Article  Google Scholar 

  15. Anthony, K.R.N., Hoogenboom, M.O., Maynard, J.A., et al., Energetics approach to predicting mortality risk from environmental stress: a case study of coral bleaching, Funct. Ecol., 2009, vol. 23, pp. 539–550.

    Article  Google Scholar 

  16. Ben-David-Zaslow, R., and Benayahu, Y., Temporal variation in lipid, protein and carbohydrate content in the Red Sea soft coral Heteroxenia fuscescens, J. Mar. Biol. Assoc. UK, 1999, vol. 79, pp. 1001–1006.

    Article  CAS  Google Scholar 

  17. Benson, A.A. and Muscatine, L., Wax in coral mucus: energy transfer from corals to reef fishes, Limnol. Oceanogr., 1974, vol. 19, pp. 810–814.

    Article  Google Scholar 

  18. Bergquist, P.R., Lawson, M.P., Lavis, A., and Cambie, R.C., Fatty acid composition and the classification of the Porifera, Biochem. Syst. Ecol., 1984, vol. 12, pp. 63–84.

    Article  CAS  Google Scholar 

  19. Bishop, D.G. and Kenrick, J.R., Fatty acid composition of symbiotic zooxanthellae in relation to their hosts, Lipids, 1980, vol. 15, pp. 799–804.

    Article  CAS  Google Scholar 

  20. Brondz, I., Development of fatty acid analysis by high-performance liquid chromatography, gas chromatography, and related techniques, Anal. Chim. Acta, 2002, vol. 465, pp. 1–37.

    Article  CAS  Google Scholar 

  21. Carballeira, N.M., Miranda, C., and Rodriguez, A.D., Phospholipid fatty acid composition of Gorgonia mariae and Gorgonia ventalina, Comp. Biochem. Physiol., Ser. B, 2002, vol. 131, pp. 83–87.

    Article  Google Scholar 

  22. Carballeira, N.M., Reyes, E.D., Sostre, A., et al., Identification of the novel antimicrobial fatty acid (5Z, 9Z)-14-methyl-5,9-pentadecadienoic acid in Eunicea succinea, J. Nat. Prod., 1997à, vol. 60, pp. 502–504.

    Article  PubMed  CAS  Google Scholar 

  23. Carballeira, N.M., Sostre, A., and Rodriguez, A.D., Phospholipid fatty acid composition of gorgonians of the genus Pseudopterogorgia: identification of tetracosapolyenoic acids, Comp. Biochem. Physiol., Ser. B, 1996, vol. 113, pp. 781–783.

    Article  CAS  Google Scholar 

  24. Carballeira, N.M., Sostre, A., and Rodriguez, A.D., Phospholipid fatty acid composition of gorgonians of the genus Eunicea: further identification of tetracosapolyenoic acids, Comp. Biochem. Physiol., Ser. B, 1997, vol. 118, pp. 257–260.

    Article  Google Scholar 

  25. Chiereszko, L.S. and Karns, T.K.B., Comparative biochemistry of coral reef coelenterates, Biology and Geology of Coral Reefs, New York: Academic Press, 1973, vol. 2, pp. 183–203.

    Chapter  Google Scholar 

  26. Chu, F.-L.E. and Greaves, J., Metabolism of palmitic, linoleic, and linolenic acids in adult oysters, Crassostrea virginica, Mar. Biol., 1991, vol. 110, pp. 229–236.

    Article  CAS  Google Scholar 

  27. Crossland, C.J., Barnes, D.J., and Borowitzka, M.A., Diurnal lipid and mucus production in the staghorn coral Acropora acuminate, Mar. Biol., 1980, vol. 60, pp. 81–90.

    Article  CAS  Google Scholar 

  28. Dalsgaard, J., John, M.S., Kattner, G., et al., Fatty acid trophic markers in the pelagic marine environment, Adv. Mar. Biol., 2003, vol. 46, pp. 225–340.

    Article  PubMed  Google Scholar 

  29. de Souza, L.M., Iacomini, M., Gorin, P.A.J., et al., Glyco- and sphingophosphonolipids from the medusa Phyllorhiza punctata: NMR and ESI-MS/MS fingerprints, Chem. Phys. Lipids, 2007, vol. 145, pp. 85–96.

    Article  PubMed  Google Scholar 

  30. Dodds, L.A., Black, K.D., Orr, H., and Roberts, J.M., Lipid biomarkers reveal geographical differences in food supply to the cold-water coral Lophelia pertusa (Scleractinia), Mar. Ecol.: Progr. Ser., 2009, vol. 397, pp. 113–124.

    Article  CAS  Google Scholar 

  31. Fabricius, C. and Alderslade, P., Soft Corals and Sea Fans: A Comprehensive Guide to the Tropical Shallow Water Genera of the Central-West Pacific, the Indian Ocean and the Red Sea, Townsville: Australian Inst. of Marine Science, 2001.

    Google Scholar 

  32. Fitt, W.K., Gates, R.D., Hoegh-Guldberg, O., et al., Response of two species of Indo-Pacific corals, Porites cylindrical and Stylophora pistillata, to short-term thermal stress: The host does matter in determining the tolerance of corals to bleaching, J. Exp. Mar. Biol. Ecol., 2009, vol. 373, pp. 102–110.

    Article  Google Scholar 

  33. Fleury, B.G., Coll, J.C., Sammarco, P.W., et al., Complementary (secondary) metabolites in an octocoral competing with a scleractinian coral: effects of varying nutrient regimes, J. Exp. Mar. Biol. Ecol., 2004, vol. 303, pp. 115–131.

    Article  CAS  Google Scholar 

  34. Grottoli, A.G., Rodrigues, L.J., and Juarez, C., Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event, Mar. Biol., 2004, vol. 145, pp. 621–631.

    Article  CAS  Google Scholar 

  35. Groweiss, A. and Kashman, Y., New furanoid fatty acid from soft corals Sarcophyton glaucum and Sarcophyton gemmatum, Experientia, 1978, vol. 34, pp. 299–299.

    Article  CAS  Google Scholar 

  36. Gurr, M.I., Harwood, J.L., and Frayn, K.N., Lipid Biochemistry, Oxford: Blackwell, 2002, 5th ed.

    Book  Google Scholar 

  37. Hamoutene, D., Puestow, T., Miller-Banoub, J., and Wareham, V., Main lipid classes in some species of deep-sea corals in the Newfoundland and Labrador region (Northwest Atlantic Ocean), Coral Reefs, 2008, vol. 27, pp. 237–246.

    Article  Google Scholar 

  38. Harland, A.D., Davies, P.S., and Fixter, L.M., Lipid content of some Caribbean corals in relation to depth and light, Mar. Biol., 1992, vol. 113, pp. 357–361.

    Article  CAS  Google Scholar 

  39. Harland, A.D., Fixter, L.M., Davies, P.S., and Anderson, R.A., Distribution of lipids between the zooxanthellae and animal compartment in the symbiotic sea anemone Anemonia viridis: wax esters, triglycerides and fatty acids, Mar. Biol., 1991, vol. 110, pp. 13–19.

    Article  CAS  Google Scholar 

  40. Harland, A.D., Navarro, J.C., Davies, P.S., and Fixter, L.M., Lipids of some Caribbean and Red Sea corals: total lipid, wax esters, triglycerides and fatty acids, Mar. Biol., 1993, vol. 117, pp. 113–117.

    Article  CAS  Google Scholar 

  41. Harwood, J.L., Lipid metabolism, in The Lipid Handbook, Boca Raton: CRC Press, 2007, 3td ed., pp. 637–699.

    Google Scholar 

  42. Hosai, K., Contribution to the biochemistry of the coral, X: A note to the comparative physiology of the coral, Fungia actiniformis var. palawensis Doderlein, Sci. Rep. Tohoku Univ. 4th Ser., 1947, vol. 18, pp. 85–87.

    Google Scholar 

  43. Imbs, A.B., Demidkova, D.A., Dautova, T.N., and Latyshev, N.A., Fatty acid biomarkers of symbionts and unusual inhibition of tetracosapolyenoic acid biosynthesis in corals (Octocorallia), Lipids, 2009, vol. 44, pp. 325–335.

    Article  PubMed  CAS  Google Scholar 

  44. Imbs, A.B., Demidkova, D.A., Latypov, Y.Y., and Pham, L.Q., Application of fatty acids for chemotaxonomy of reef-building corals, Lipids, 2007, vol. 42, pp. 1035–1046.

    Article  PubMed  CAS  Google Scholar 

  45. Imbs, A.B., Demina, O.A., and Demidkova, D.A., Lipid class and fatty acid composition of the boreal soft coral Gersemia rubiformis, Lipids, 2006, vol. 41, pp. 721–725.

    Article  PubMed  CAS  Google Scholar 

  46. Imbs, A.B., and Latyshev, N.A., Fatty acid composition as an indicator of possible sources of nutrition for soft corals of the genus Sinularia (Alcyoniidae), J. Mar. Biol. Assoc. UK, 2012, vol. 92, pp. 1341–1347.

    Article  CAS  Google Scholar 

  47. Imbs, A.B., Latyshev, N.A., Dautova, T.N., and Latypov, Y.Y., Distribution of lipids and fatty acids in corals by their taxonomic position and presence of zooxanthellae, Mar. Ecol.: Progr. Ser., 2010, vol. 409, pp. 55–65.

    Article  Google Scholar 

  48. Imbs, A.B., Latyshev, N.A., Zhukova, N.V., and Dautova, T.N., Comparison of fatty acid compositions of azooxanthellate Dendronephthya and zooxanthellate soft coral species, Comp. Biochem. Physiol., Ser. B, 2007, vol. 148, pp. 314–321.

    Article  Google Scholar 

  49. Imbs, A.B., Luu, H.V., and Long, P.Q., Lipids of soft coral Sinularia species, Chem. Nat. Comp., 2007, vol. 43, pp. 610–611.

    Article  CAS  Google Scholar 

  50. Imbs, A.B., Maliotin, A.N., Huyen, L.V., and Pham, L.Q., Study of fatty acid composition of 17 coral species of Vietnam, J. Sci. Technol., 2005, vol. 43, pp. 84–91.

    Google Scholar 

  51. Imbs, A.B. and Yakovleva, I.M., Dynamics of lipid and fatty acid composition of shallow-water corals under thermal stress: an experimental approach, Coral Reefs, 2012, vol. 31, pp. 41–53.

    Article  Google Scholar 

  52. Imbs, A.B., Yakovleva, I.M., and Pham, L.Q., Distribution of lipids and fatty acids in the zooxanthellae and host of the soft coral Sinularia sp., Fish. Sci., 2010, vol. 76, pp. 375–380.

    Article  CAS  Google Scholar 

  53. Joseph, J.D., Lipid composition of marine and estuarine invertebrates: Porifera and Cnidaria, Progr. Lipid Res., 1979, vol. 18, pp. 1–30.

    Article  CAS  Google Scholar 

  54. Kariotoglou, D.M. and Mastronicolis, S.K., Sphingophosphonolipids, phospholipids, and fatty acids from Aegean jellyfish Aurelia aurita, Lipids, 2001, vol. 36, pp. 1255–1264.

    Article  PubMed  CAS  Google Scholar 

  55. Lages, B.G., Fleury, B.G., Rezende, C.M., et al., Chemical composition and release in situ due to injury of the invasive coral Tubastraea (Cnidaria, Scleractinia), Brazil. J. Oceanogr., 2010, vol. 58, pp. 47–56.

    Google Scholar 

  56. Latyshev, N.A., Naumenko, N.V., Svetashev, V.I., and Latypov, Y.Y., Fatty acids of reefbuilding corals, Mar. Ecol. Progr. Ser., 1991, vol. 76, pp. 295–301.

    Article  CAS  Google Scholar 

  57. Leonard, A.E., Pereira, S.L., Sprecher, H., and Huang, Y.-S., Elongation of long-chain fatty acids, Progr. Lipid Res., 2004, vol. 43, pp. 36–54.

    Article  CAS  Google Scholar 

  58. Li, G.Q., Li X., Deng, Z.W., et al., Two new constituents from the soft coral Nephthea hainansis, Chin. Chem. Lett., 2005, vol. 16, pp. 494–496.

    CAS  Google Scholar 

  59. Light, R.J., Identification and analysis of arachidonic acid in Plexaura homomalla, var. R and var. S, Biochim. Biophys. Acta, 1973, vol. 296, pp. 461–466.

    Article  PubMed  CAS  Google Scholar 

  60. Luu, H.V., Doan, P.L., Pham, L.Q., and Imbs, A.B., Fatty acids as chemotaxonomy of Vietnamese coral, J. Sci. Technol., 2005, vol. 43, pp. 92–100.

    Google Scholar 

  61. Mason, W.T., Isolation and characterization of the lipids of the sea anemone, Metridium senile, Biochim. Biophys. Acta, 1972, vol. 280, pp. 538–544.

    Article  CAS  Google Scholar 

  62. Meyer, A., Kirsch, H., Domergue, F., et al., Novel fatty acid elongases and their use for the reconstitution of docosahexaenoic acid biosynthesis, J. Lipid Res., 2004, vol. 45, pp. 1899–1909.

    Article  PubMed  CAS  Google Scholar 

  63. Meyers, P.A., Fatty acids and hydrocarbons of Caribbean corals, in Proc. of Third Int. Coral Reef Symp., Miami, Florida: Rosenstiel School of Marine and Atmospheric Science, 1977, vol. 1, pp. 529–537.

    CAS  Google Scholar 

  64. Meyers, P.A., Polyunsaturated fatty acids in coral: indicators of nutritional sources, Mar. Biol. Lett., 1979, vol. 1, pp. 69–75.

    CAS  Google Scholar 

  65. Meyers, P.A., Barak, J.E., and Peters, E.C., Fatty acid composition of the Caribbean coral Manicina areolata, Bull. Mar. Sci., 1978, vol. 28, pp. 789–792.

    CAS  Google Scholar 

  66. Meyers, P.A., Porter, J.W., and Chad, R.L., Depth analysis of fatty acids in two Caribbean reef corals, Mar. Biol., 1978, vol. 49, pp. 197–202.

    Article  CAS  Google Scholar 

  67. Miralles, J., Barnathan, G., Galonnier, R., et al., New branched chain fatty acids from the Senegalese gorgonian Leptogorgia piccola (white and yellow morphs), Lipids, 1995, vol. 30, pp. 459–466.

    Article  PubMed  CAS  Google Scholar 

  68. Mukhamedova, K.S. and Glushenkova, A.I., Natural phosphonolipids, Chem. Nat. Comp., 2000, vol. 36, pp. 329–341.

    Article  CAS  Google Scholar 

  69. Nelson, M.M., Phleger, C.F., Mooney, B.D., and Nichols, P.D., Lipids of gelatinous Antarctic zooplankton: Cnidaria and Ctenophora, Lipids, 2000, vol. 35, pp. 551–559.

    Article  PubMed  CAS  Google Scholar 

  70. Oku, H., Yamashiro, H., Onaga, K., et al., Lipid distribution in branching coral Montipora digitata, Fish. Sci., 2002, vol. 68, pp. 517–522.

    Article  CAS  Google Scholar 

  71. Oku, H., Yamashiro, H., Onaga, K., et al., Seasonal changes in the content and composition of lipids in the coral Goniastrea aspera, Coral Reefs, 2003, vol. 22, pp. 83–85.

    Google Scholar 

  72. Papina, M., Meziane, T., and van Woesik, R., Symbiotic zooxanthellae provide the host-coral Montipora digitata with polyunsaturated fatty acids, Comp. Biochem. Physiol., Ser. B, 2003, vol. 135, pp. 533–537.

    Article  CAS  Google Scholar 

  73. Pasby, B.F., A characterization of the lipids of the organisms which make up the main bulk of coral reef with particular emphasis on the hydrocarbons, Ph. D. Thesis, Texas A and M University, College Station, 1965, 149 p.

    Google Scholar 

  74. Patton, J.S., Abraham, S., and Benson, A.A., Lipogenesis in the intact coral Pocillopora capitata and its isolated zooxanthellae: evidence for a light-driven carbon cycle between symbiont and host, Mar. Biol., 1977, vol. 44, pp. 235–247.

    Article  CAS  Google Scholar 

  75. Patton, J.S., Battey, J.F., Rigler, M.W., et al., A comparison of the metabolism of bicarbonate 14C and acetate 1-14C and the variability of species lipid compositions in reef corals, Mar. Biol., 1983, vol. 75, pp. 121–130.

    Article  CAS  Google Scholar 

  76. Pereira, S.L., Leonard, A.E., and Mukerji, P., Recent advances in the study of fatty acid desaturases from animals and lower eukaryotes, in Prostaglandins Leukotrienes and Essential Fatty Acids, 2003, vol. 68, pp. 97–106.

    Article  CAS  Google Scholar 

  77. Pham, L.Q. and Imbs, A.B., Lipids, Fatty Acids and Oxylipins of Corals, Hanoi: Science and Technology Publ. House, 2012.

    Google Scholar 

  78. Pham, L.Q., Imbs, A.B., and Tong, P.H.S., Study on biodiversity of fatty acid composition in coral reef of Vietnam, J. Sci. Technol., 2007, vol. 45, pp. 282–291.

    Google Scholar 

  79. Rossi, S. and Tsounis, G., Temporal and spatial variation in protein, carbohydrate, and lipid levels in Corallium rubrum (Anthozoa, Octocorallia), Mar. Biol., 2007, vol. 152, pp. 429–439.

    Article  CAS  Google Scholar 

  80. Rouser, G., Kritchevsky, G., Heller, D., and Lieber, E., Lipid composition of beef brain, beef liver, and the sea anemone: two approaches to quantitative fractionation of complex lipid mixtures, J. Am. Oil Chem. Soc., 1963, vol. 40, pp. 425–454.

    Article  Google Scholar 

  81. Slattery, M. and McClintock, J.B., Population structure and feeding deterrence in three shallow-water Antarctic soft corals, Mar. Biol., 1995, vol. 122, pp. 461–470.

    Article  Google Scholar 

  82. Sprecher, H., Metabolism of highly unsaturated n-3 and n-6 fatty acids, Biochim. Biophys. Acta, 2000, vol. 1486, pp. 219–231.

    Article  PubMed  CAS  Google Scholar 

  83. Stimson, J.S., Location, quantity and rate of change in quantity of lipids in tissue of Hawaiian hermatypic corals, Bull. Mar. Sci., 1987, vol. 41, pp. 889–904.

    Google Scholar 

  84. Svetashev, V.I. and Vysotskii, M.V., Fatty acids of Heliopora coerulea and chemotaxonomic significance of tetracosapolyenoic acids in coelenterates, Comp. Biochem. Physiol., Ser. B, 1998, vol. 119, pp. 73–75.

    Article  Google Scholar 

  85. Tocher, D.R., Leaver, M.J., and Hodgson, P.A., Recent advances in the biochemistry and molecular biology of fatty acyl desaturases, Progr. Lipid Res., 1998, vol. 37, pp. 73–117.

    Article  CAS  Google Scholar 

  86. Treignier, C., Grover, R., Ferrier-Pages, C., and Tolosa, I., Effect of light and feeding on the fatty acid and sterol composition of zooxanthellae and host tissue isolated from the scleractinian coral Turbinaria reniformis, Limnol. Oceanogr., 2008, vol. 53, pp. 2702–2710.

    Article  CAS  Google Scholar 

  87. Vysotskii, M.V. and Svetashev, V.I., Identification, isolation and characterization of tetracosapolyenoic acids in lipids of marine coelenterates, Biochim. Biophys. Acta, 1991, vol. 1083, pp. 161–165.

    Article  PubMed  CAS  Google Scholar 

  88. Ward, S., The effect of damage on the growth, reproduction and storage of lipids in the scleractinian coral Pocillopora damicornis (Linnaeus), J. Exp. Mar. Biol. Ecol., 1995a, vol. 187, pp. 193–206.

    Article  CAS  Google Scholar 

  89. Ward, S., Two patterns of energy allocation for growth, reproduction and lipid storage in the scleractinian coral Pocillopora damicornis, Coral Reefs, 1995b, vol. 14, pp. 87–90.

    Article  Google Scholar 

  90. Watanabe, K., Makino, R., and Takahashi, H., et al., Structure of an unsaturated fatty acid with unique vicinal dimethyl branches isolated from the Okinawan soft coral of the genus Sinularia, Chem. Pharm. Bull., 2008, vol. 56, pp. 861–863.

    Article  PubMed  CAS  Google Scholar 

  91. Yamashiro, H., Oku, H., Higa, H., et al., Composition of lipids, fatty acids and sterols in Okinawan corals, Comp. Biochem. Physiol., Ser. B, 1999, vol. 122, pp. 397–407.

    Article  Google Scholar 

  92. Yamashiro, H., Oku, H., Onaga, K., et al., Coral tumors store reduced level of lipids, J. Exp. Mar. Biol. Ecol., 2001, vol. 265, pp. 171–179.

    Article  CAS  Google Scholar 

  93. Yamashiro, H., Oku, H., and Onaga, K., Effect of bleaching on lipid content and composition of Okinawan corals, Fish. Sci., 2005, vol. 71, pp. 448–453.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Imbs.

Additional information

Original Russian Text © A.B. Imbs, 2013, published in Biologiya Morya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imbs, A.B. Fatty acids and other lipids of corals: Composition, distribution, and biosynthesis. Russ J Mar Biol 39, 153–168 (2013). https://doi.org/10.1134/S1063074013030061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074013030061

Keywords

Navigation