Skip to main content
Log in

Strontium sorption by pectins isolated from the Sea grasses Zostera marina and Phyllospadix iwatensis

  • Biochemistry
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

In this study, we determined the parameters of sorption of strontium ions by pectins that were isolated from the sea grasses Zostera marina and Phyllospadix iwatensis collected in the Peter the Great Bay of the Sea of Japan. The maximum strontium binding capacity and the coefficient of affinity with respect to strontium ions were significantly higher in sea grass pectins than in commercial pectin. These parameters were correlated with the etherification degree of pectins. The sea grasses studied here can be considered as a promising source of pectins for the binding and removal of strontium radioisotopes from the human body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vasilenko, I. Ya., Toxicology of Products of Nuclear Fission, Moscow: Meditsina, 1999.

    Google Scholar 

  2. Khotimchenko, Yu. S., Ermak I.M., Bednyak A.E. et al., Pharmacology of non-starch polysaccharides, Vestn. DVO RAN, 2005, no. 1, pp. 72–82.

  3. Khotimchenko, M.Yu., Lenskaya, K.V., Petrakova, M.Yu., Khotimchenko, Yu.S., and Kovalev, V.V., The Mercury Binding Activity of Pectin Isolated from the Sea grass Zostera marina, Russian Journal of Marine Biology, 2006, vol. 32, no. 5, pp. 312–315.

    Article  CAS  Google Scholar 

  4. Ahmadpour, A., Zabihi, M., Tahmasbi, M., and Bastami, T.R., Effect of Adsorbents and Chemical Treatments on the Removal of Strontium from Aqueous Solutions, J. Hazard. Mater., 2010, vol. 182, pp. 552–556.

    Article  PubMed  CAS  Google Scholar 

  5. Anthon, G.E. and Barrett, D.M., Combined Enzymatic and Colorimetric Method for Determining the Uronic Acid and Methylester Content of Pectin: Application to Tomato Products, Food Chem., 2008, vol. 110, pp. 239–247.

    Article  CAS  Google Scholar 

  6. Cabrera, W.E., Schrooten, I., De Broe, M.E., and D’Haese, P.C., Strontium and Bone, J. Bone Miner. Res., 1999, vol. 14, pp. 661–668.

    Article  PubMed  CAS  Google Scholar 

  7. Cohen-Solal, M. Strontium Overload and Toxicity: Impact of Renal Osteodystrophy, Nephrol. Dial. Transplant., 2002, vol. 17, suppl. 2, pp. 30–34.

    Article  Google Scholar 

  8. Davis, T.A., Volesky, B., and Mucci, A., A Review of the Biochemistry of Heavy Metal Biosorption by Brown Algae, Water Res., 2003, vol. 37, pp. 4311–4330.

    Article  PubMed  CAS  Google Scholar 

  9. De Oliveira, E.M., Suzuki M.F., do Nascimento, P.A. et al., Evaluation of the Effect of 90Sr Beta-Radiation on Human Blood Cells by Chromosome Aberration and Single Cell Gel Electrophoresis (Comet Assay) Analysis, Mutat. Res., 2001, vol. 476, pp. 109–121.

    Article  PubMed  Google Scholar 

  10. Garrido, J.C., Tascon, M.L., Vazquez, M.D., and Sanchez Batanero, P., Complexometric Determination of Strontium (II) and Barium (II) by Using an Indirect Indicator, Quim. Anal., 1985, vol. 4, pp. 423–431.

    CAS  Google Scholar 

  11. Imanaka, T., Fucutani, S., Yamamoto, M. et al., Width and Center-Axis Location of the Radioactive Plume that Passed over Dolon and Nearby Villages on the Occasion of the First USSR A-Bomb Test in 1949, J. Radiat. Res., 2005, vol. 46, pp. 395–399.

    Article  PubMed  Google Scholar 

  12. Khotimchenko, M.Y., Kovalev, V.V., and Khotimchenko, Y.S., Equilibrium Studies of Sorption of Lead (II) Ions by Different Pectin Compounds, J. Hazard. Mater., 2007, vol. 149, pp. 693–699.

    Article  PubMed  CAS  Google Scholar 

  13. Korzun, V.N., Nutrition Problems under Wide-Scale Nuclear Accident Conditions and Its Consequences, Int. J. Radiat. Med., 1999, vol. 2, pp. 75–91.

    Google Scholar 

  14. Levitskaia, T.G., Creim, J.A., Curry, T.L. et al., Biomaterials for the Decorporation of 85Sr in the Rat, Health Phys., 2010, vol. 99, pp. 393–400.

    Article  Google Scholar 

  15. Luzio, G.A., Determination of Galacturonic Acid Content of Pectin Using a Microtiter Plate Assay, Proc. Florida State Horticult. Soc., 2004, vol. 117, pp. 416–421.

    Google Scholar 

  16. Manos, M.J., Ding, N., and Kanatzidis, M.G., Layered Metal Sulfides: Exceptionally Selective Agents for Radioactive Strontium Removal, PNAS, 2008, vol. 105, pp. 3696–3699.

    Article  PubMed  CAS  Google Scholar 

  17. Marinin, D.V. and Brown, G.N., Studies of Sorbent/Ion-Exchange Materials for the Removal of Radioactive Strontium from Liquid Radioactive Waste and High Hardness Groundwaters, Waste Manag., 2000, vol. 20, pp. 545–553.

    Article  CAS  Google Scholar 

  18. Matsunaga, T. and Ishii, T., Characterization of Metal Binding Properties of Rhamnogalacturonan II from Plant Cell Walls by Size-Exclusion HPLC/ICP-MS, Anal. Sci., 2004, vol. 20, pp. 1389–1393.

    Article  PubMed  CAS  Google Scholar 

  19. Morohashi, T., Sano, T., and Yamada, S., Effects of Strontium on Calcium Metabolism in Rats. I. A Distinction Between the Pharmacological and Toxic Doses, Jap. J. Pharmacol., 1994, vol. 64, pp. 155–162.

    Article  PubMed  CAS  Google Scholar 

  20. Murakami, D., Suzuki, M.F., da Silva Dias, M., and Okazaki, K., Genotoxic and Cytotoxic Effects of 60Co Gamma-rays and 90Sr/90Y Beta-Rays on Chinese Hamster Ovary Cells (CHO-K1), Radiat. Environ. Biophys., 2004, vol. 43, pp. 91–99.

    Article  PubMed  CAS  Google Scholar 

  21. Nayak, D. and Lahiri, S., Biosorption of Toxic, Heavy, No-Carrier-Added Radionuclides by Calcium Alginate Beads, J. Radioanalyt. Nucl.Chem., 2006, vol. 267, pp. 59–65.

    Article  CAS  Google Scholar 

  22. Nesterenko, V.B., Nesterenko, A.V., Babenko, V.I. et al., Reducing the 137Cs-Load in the Organism of “Chernobyl” Children with Apple-Pectin, Swiss Med. Wkly, 2004, vol. 134, no. 1-2, pp. 24–27.

    PubMed  CAS  Google Scholar 

  23. Nilsson, M., Ekberg, C., Foreman, M. et al., Separation of Actinides (III) from Lanthanides (III) in Simulated Nuclear Waste Streams Using 6,6′-bis-(5,6-dipentyl-[2,2,4]triazin-3-yl)-[2,2′]bipyridinyl (C5-BTBP) in Cyclohexanone, Solvent Extr. Ion Exc., 2006, vol. 25, pp. 823–843.

    Article  Google Scholar 

  24. Pinheiro, E.R., Silva, I.M.D.A., Gonzaga, L.V. et al., Optimization of Extraction of High-Ester Pectin from Passion Fruit Peel (Passifloraedulisflavicarpa) with Citric Acid by Using Response Surface Methodology, Bioresource Technol., 2008, vol. 99, pp. 5561–5566.

    Article  CAS  Google Scholar 

  25. Pors Nielsen, S., The Biological Role of Strontium, Bone, 2004, vol. 35, pp. 583–588.

    Article  PubMed  CAS  Google Scholar 

  26. Quinn, K.A., Byrne, R.H., and Schijf, J., Sorption of Yttrium and Rare Earth Elements by Amorphous Ferric Hydroxide: Influence of Temperature, Environ. Sci. Technol., 2007, vol. 41, no. 2, pp. 541–546.

    Article  PubMed  CAS  Google Scholar 

  27. Schrooten, I., Elseviers, M.M., Lamberts, L.V. et al., Increased Serum Strontium Levels in Dialysis Patients: an Epidemiological Survey, Kidney Int. 1999, vol. 56, pp. 1886–1892.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Khotimchenko.

Additional information

Original Russian Text © E.A. Kolenchenko, M.Yu. Khotimchenko, E.V. Khozhaenko, Yu.S. Khotimchenko, 2012, published in Biologiya Morya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolenchenko, E.A., Khotimchenko, M.Y., Khozhaenko, E.V. et al. Strontium sorption by pectins isolated from the Sea grasses Zostera marina and Phyllospadix iwatensis . Russ J Mar Biol 38, 346–350 (2012). https://doi.org/10.1134/S1063074012040050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074012040050

Keywords

Navigation