Skip to main content
Log in

Effect of tensile strength of rock on tensile fracture toughness using experimental test and PFC2D simulation

  • Geomechanics
  • Published:
Journal of Mining Science Aims and scope

Abstract

The effect of tensile strength on the tensile fracture toughness of rock like specimen was studied in this paper. Brazilian test was done to determine tensile strength of material. A compression to tensile load transforming (CTT) device was developed for determination of mode I fracture toughness of concrete. Also particle flow code (PFC) was used for validation of the experimental outputs. Three concrete slabs with different tensile strength were prepared for investigation of the effects of tensile strength on the fracture toughness. The samples were made from a mixture of water, fine sand and cement with different ratio. These samples were installed in CTT device. A 30-tons hydraulic load cell applied compressive loading to CTT end plates with a constant pressure of 0.02 MPa per second. Compressive loading was converted to tensile stress on the sample because of the overall test design. The results show Fracture toughness has a close relationship with tensile strength of concrete so it increases with increasing the tensile strength. In constant join length, the angle of crack growth related to normal load was decreased with increasing the grain size. Numerical simulation shows that failure pattern and fracture toughness was nearly similar to experimental results. Finally, it can be concluded that CTT device was capable for determination of fracture toughness of concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lajtai, E.Z., Strength of Discontinuous Rock in Direct Shearing, Geotechnique, 1969, vol. 19, pp. 218–233.

    Article  Google Scholar 

  2. Atkinson, B.K., Fracture Mechanics of Rock, Academician Press, London, 1987.

    Google Scholar 

  3. Whittaker, B.N., Singh, R.N., and Sun, G., Rock Fracture Mechanics—Principles, Design and Applications, Elsevier, Amsterdam, 1992.

    Google Scholar 

  4. Ouchterlony, F., Suggested Methods for Determining the Fracture Toughness of rock, Int. J. Rock Mech. Mineral Sci. Geo-Mech. Abstr., 1988, vol. 25, no. 1, pp. 71–96.

    Google Scholar 

  5. Lim, I.L., Johnston, I.W., Choi, S.K., and Boland, J.N., Fracture Testing of a Soft Rock with Semi-Circular Specimens under Three-Point Bending. Part 2: Mixed Mode, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1994, 31(3), pp. 199–212.

    Article  Google Scholar 

  6. Atkinson, C., Smelser, R.E., and Sanchez, J., Combined Mode Fracture via the Cracked Brazilian Disc Test, Int. J. Fract., 1982, 18, pp. 279–91.

    Google Scholar 

  7. Chang, S.H., Lee, C.I., and Jeon, S., Measurement of Rock Fracture Toughness under Modes I and II and Mixed-Mode Conditions by Using Disc-Type Specimen, Eng. Geol., 2002, 66, pp. 9–97.

    Article  Google Scholar 

  8. Shetty, D.K., Rosenfield, A.R., and Duckworth, W.H., Mixed-Mode Fracture in Biaxial Stress State: Application of the Diametral-Compression (Brazilian Disk) Test, Eng. Fract. Mech., 1987, vol. 26, no. 6, pp. 825–40.

    Article  Google Scholar 

  9. Khan, K. and Al-Shayea, N.A., Effect of Specimen Geometry and Testing Method on Mixed I–II Fracture Toughness of a Limestone Rock from Saudi Arabia, Rock Mech. Rock Eng., 2000, 33(3), pp. 179–206.

    Article  Google Scholar 

  10. Maccagno, T.M. and Knott, J.F., The Fracture Behavior of PMMA in Mixed Modes I and II, Eng. Fract. Mech., 1989, 34(1), pp. 65–86.

    Article  Google Scholar 

  11. He, M.Y., Cao, H.C., and Evans, A.G., Mixed-Mode Fracture: The Four Point Shear Specimen, Acta Metal Mater., 1990, 38, pp. 839–46.

    Article  Google Scholar 

  12. Suresh, S, Shih, C.F., Morrone, A., and O’Dowd, N.P., Mixed-Mode Fracture Toughness of Ceramic Materials, J. Am. Ceram. Soc., 1990, 73, pp. 1257–67.

    Article  Google Scholar 

  13. Huang, J. and Wang, S., An Experimental Investigation Concerning the Comprehensive Fracture Toughness of Some Brittle Rocks, Int. J. Rock Mech. Min. Sci., Geomech. Abstr., 1985, 22(2), pp. 99–104.

    Article  Google Scholar 

  14. Buchholz, F.G., Pirro, P.J.M., Richard, H.A., and Dreyer, K.H., Numerical and Experimental Mixed-Mode Analysis of a Compact Tension-Shear–Specimen, Proc. 4th Int. Conf. Numerical Methods in Fracture Mechanics, Swansea: Pineridge Press, 1987, pp. 641–56.

    Google Scholar 

  15. Mahajan, R.V. and Ravi-Chandar, K., An Experimental Investigation of Mixed-Mode Fracture, Int. J. Fract., 1989, 41, pp. 235–52.

    Article  Google Scholar 

  16. Banks-Sills, L. and Bortman, Y., A Mixed-Mode Fracture Specimen, Analysis and Testing, Int. J. Fract., 1986, 30, pp. 181–201.

    Article  Google Scholar 

  17. Chong, K.P. and Kuruppu, M.D., New Specimen for Fracture Toughness Determination for Rock and Other Materials, Int. J. Fract., 1984, 26, pp. R59–62.

    Article  Google Scholar 

  18. Chong, K.P. and Kuruppu, M.D., Fracture Toughness Determination of Layered Materials, Eng. Fract. Mech., 1987, 28(1), pp. 43–54.

    Article  Google Scholar 

  19. Singh, R.N. and Sun. G.X., ANumerical and Experimental Investigation for Determining Fracture Toughness of Welsh Limestone, Min. Sci. Tech., 1990, 1 pp. 61–70.

    Article  Google Scholar 

  20. Lim, I.L., Johnston, I.W., Choi, S.K., and Boland, J.N., Fracture Testing of a Soft Rock with Semi-Circular Specimens under Three-Point Bending. Parts 1, 2, Int. J. Rock Mech. Mineral Sci. Geomech. Abstr., 1994, 31(3), pp. 185–212.

    Article  Google Scholar 

  21. Ouchterlony, F., A Core Bend Specimen with Chevron Edge Notch for Fracture Toughness Measurement, Proc. 27th USS ymp. Rock Mechanics, 1986, pp. 177–84.

    Google Scholar 

  22. Barker, L.M., A Simplified Method for Measuring Plane Strain Fracture Toughness, Eng. Fract. Mech., 1977, 9, pp. 361–9.

    Article  Google Scholar 

  23. Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M., and Nejati, H.R., Numerical Simulation of the Process of Fracture of Echelon Rock Joints, Rock Mechanics and Rock Engineering, 2014, 47(4), pp. 1355–1371.

    Article  Google Scholar 

  24. Bobet, A., Fracture Coalescence in Rock Materials: Experimental Observations and Numerical Predictions, Sc.D. Thesis, MIT, Cambridge, USA, 1997.

    Google Scholar 

  25. Ouchterlony, F., A New Core Specimen for the Fracture Toughness Testing of Rock, Swedish Detonic Research Foundation Report, Stockholm, Sweden, DS, 1980.

    Google Scholar 

  26. Dai, F., Chen, R., Iqbal, M.J., and Xia, K., Dynamic Cracked Chevron Notched Brazilian Disc Method for Measuring Rock Fracture Parameters, Int. J. Rock Mech. Min. Sci., 2010, 47(4), pp. 606–613.

    Article  Google Scholar 

  27. Kataoka, M., Obara, Y., and Kuruppu, M., Estimation of Fracture Toughness of Anisotropic Rocks by SCB Test and Visualization of Fracture by Means of X-Ray CT, Proc. 12th ISRM International Congress, Beijing, China, 2011, pp. 667–670.

    Google Scholar 

  28. Tutluoglu, L. and Keles, C., Mode I Fracture Toughness Determination with Straight Notched Disk Bending Method, Int. J. Rock Mech. Min. Sci., 2011, 48, pp. 1248–1261.

    Article  Google Scholar 

  29. Amrollahi, H., Baghbanan, A., and Hashemolhosseini, H., Measuring Fracture Toughness of Crystalline Marbles under Modes I and II and Mixed Mode I–II Loading Conditions Using CCNBD and HCCD Specimens, Int. J. Rock Mech. Min. Sci., 2011, 48(7), pp. 1123–1134.

    Article  Google Scholar 

  30. Aliha, M.R.M., Sistaninia, M., Smith, D.J., Pavier, M.J., and Ayatollahi, M.R., Geometry Effects and Statistical Analysis of Mode I Fracture in Guiting Limestone, Int. J. Rock Mech. Min. Sci., 2012, 51, pp. 128–135.

    Article  Google Scholar 

  31. Zhou, Y.X., Xia, K., Li, X.B., Li, H.B., Ma, G.W., Zhao, J., Zhou, Z.L., and Dai, F., Suggested Methods for Determining the Dynamic Strength Parameters and Mode-I Fracture Youghness of Rock Materials, Int. J. Rock Mech. Min. Sci., 2012, 49, pp. 105–112.

    Article  Google Scholar 

  32. Kataoka, M., Hashimoto, A., Sato, A., and Obara, Y., Fracture Toughness of Anisotropic Rocks by Semi-Circular Bend (SCB) Test under Water Vapor Pressure, Proc. 7th ARMS, Seoul, Korea, 2012, pp. 458–465.

    Google Scholar 

  33. Kataoka, M. and Obara, Y., Estimation of Fracture Toughness of Different Kinds of Rocks under Water Vapor Pressure by SCB Test, J MMIJ, 2013, 129, pp. 425–432.

    Article  Google Scholar 

  34. Ramadoss, P. and Nagamani, K., Stress–Strain Behavior and Toughness of High-Performance Steel Fiber Reinforced Concrete in Compression, Computers and Concrete, An Int’l Journal, 2013, 11(2), pp. 55–65.

    Google Scholar 

  35. Ayatollahi, M.R. and Alborzi, M.J., Rock Fracture Toughness Testing Using SCB Specimen, Proc. 13th Int. Conf. Fracture, Beijing, China, 2013, pp. 1–7.

    Google Scholar 

  36. Kuruppu, M.D., Obara, Y., Ayatollahi, M.R., Chong, K.P., and Funatsu, T., ISRM-Suggested Method for Determining the Mode I Static Fracture Toughness Using Semi-Circular Bend Specimen, Rock Mech. Rock Eng., 2014, 47, pp. 267–274.

    Article  Google Scholar 

  37. Pan, B., Gao, Y., and Zhong, Y., Theoretical Analysis of Overlay Resisting Crack Propagation in Old Cement Concrete Pavement, Structural Engineering and Mechanics, An Int’l Journal, 2014, 52(4), pp. 167–181.

    Google Scholar 

  38. Wei, M.D., Dai, F., Xu, N.W., Xu, Y., and Xia, K., Three-Dimensional Numerical Evaluation of the Progressive Fracture Mechanism of Cracked Chevron Notched Semi-Circular Bend Rock Specimens, Eng. Fract. Mech., 2015, 134, pp. 286–303.

    Article  Google Scholar 

  39. Kequan, Y.U. and Zhoudao, L.U., Influence of Softening Curves on the Residual Fracture Toughness of Post-Fire Normal-Strength Concrete, Computers and Concrete, An Int’l Journal, 2015, 15(2), pp. 102–111.

    Google Scholar 

  40. Lee, S. and Chang, Y., Evaluation of RPV According to Alternative Fracture Toughness Requirements, Structural Engineering and Mechanics, An Int’l Journal, 2015, vol. 53, no. 6.

    Google Scholar 

  41. Haeri, H., Shahriar, K., Marji, M.F., and Moarefvand, P., Investigating the Fracturing Process of Rock-Like Brazilian Discs Containing Three Parallel Cracks under Compressive Line Loading, Strength of Materials, 2014, 46(3), pp. 133–148.

    Article  Google Scholar 

  42. Haeri, H., Marji, M.F., and Shahriar, K., Simulating the Effect of Disc Erosion in TBM Disc Cutters by a Semi-Infinite DDM, Arabian Journal of Geosciences, 2015, 8(6), pp. 3915–3927.

    Article  Google Scholar 

  43. Haeri, H., Khaloo, K., and Marji, M.F., Experimental and Numerical Analysis of Brazilian Discs with Multiple Parallel Cracks, Arabian Journal of Geosciences, 2015, 8(8), pp. 5897–5908.

    Article  Google Scholar 

  44. Haeri, H., Shahriar, K., Marji, M.F., and Moarefvand, P., The HDD Analysis of Micro Cracks Initiation, Propagation and Coalescence in Brittle Substances, Arabian Journal of Geosciences, 2015, 8, pp. 2841–2852.

    Article  Google Scholar 

  45. Haeri, H., Propagation Mechanism of Neighboring Cracks in Rock-Like Cylindrical Specimens under Uniaxial Compression, J. Min. Sci., 2015, vol. 51, no. 3, pp. 487–496.

    Article  Google Scholar 

  46. Haeri, H., Influence of the Inclined Edge Notches on the Shear-Fracture Behavior in Edge-Notched Beam Specimens, Comput. Concrete, 2015, vol. 16(4), pp. 605–623.

    Article  Google Scholar 

  47. Haeri, H., Experimental Crack Analysis of Rock-Like CSCBD Specimens Using a Higher Order DDM, Comput. Concrete, 2015, 16(6), pp. 881–896.

    Article  Google Scholar 

  48. Akbas, S., Analytical Solutions for Static Bending of Edge Cracked Micro Beams, Structural Engineering and Mechanics, An Int’l Journal, 2016, 59(3), pp. 66–78.

    Google Scholar 

  49. Rajabi, M., Soltani, N., and Eshraghi, I., Effects of Temperature Dependent Material Properties on Mixed Mode Crack Tip Parameters of Functionally Graded Materials, Structural Engineering and Mechanics, An Int’l Journal, 2016, 58(2), pp. 144–156.

    Google Scholar 

  50. Mohammad, A., Statistical Flexural Toughness Modeling of Ultra High Performance Concrete Using Response Surface Method, Computers and Concrete, An Int’l Journal, 2016, 17(4), pp. 33–39.

    Google Scholar 

  51. Haeri, H. and Sarfarazi, V., The Effect of Micro Pore on the Characteristics of Crack Tip Plastic Zone in Concrete, Computers and Concrete, 2016, 17(1), pp. 107–12.

    Article  Google Scholar 

  52. Fowell, R.J. and Chen, J.F., The Third Chevron-Notch Rock Fracture Specimen—The Cracked Chevron-Notched Brazilian Disk, Proc. 31st U.S. Symp. Rock, Balkema, Rotterdam, 1990, pp. 295–302.

    Google Scholar 

  53. Fowell, R.J. and Xu, C., The Cracked Chevron Notched Brazilian Disc Test—Geometrical Considerations for Practical Rock Fracture Toughness Measurement, Int. J. Rock Mech. Mineral Sci. Geomech. Abstr., 1993, 30(7), pp. 821–824.

    Article  Google Scholar 

  54. Lim, I.L., Johnston, I.W., and Choi, S.K., Assessment of Mixed-Mode Fracture Toughness Testing Methods for Rock, Int. J. Rock Mech. Mineral Sci. Geomech. Abstr., 1994, 31(3), pp. 265–272.

    Article  Google Scholar 

  55. Zhang, Xiao-ping and Wong, L.N.Y., Cracking Process in Rock-Like Material Containing a Single Flaw under Uniaxial Compression: A Numerical Study Based on Parallel Bonded-Particle Model Approach, Rock Mechanics and Rock Engineering, 2012, vol. 45(5), pp. 711–737.

    Google Scholar 

  56. Sato K., Fracture Toughness Evaluation Based on Tension-softening Model and its Application to Hydraulic Fracturing, Pure Appl. Geophys., 2006, 163, pp. 1073–1089.

    Article  Google Scholar 

  57. Wang, Q., Jia, X., Kou, S., Zhang, Z., and Lindqvist, P.A., More Accurate Stress Intensity Factor Derived by Finite Element Analysis for the ISRM Suggested Rock Fracture Toughness Specimen—CCNBD, Int. J. Rock Mech. Min. Sci., 2003, 40, pp. 233–241.

    Article  Google Scholar 

  58. Wang, Q., Jias, X., Kou, S., Zang, Z., and Lindqvist, P.A., The Flattened Brazilian Disc Specimen Used for Testing Elastic Modulus, Tensile Strength and Fracture Toughness of Brittle Rocks: Analytical and Numerical Results, Int. J. Rock Mech. Min. Sci., 2004, 41 pp. 245–253.

    Article  Google Scholar 

  59. Ke, C.C., Chen, C.S., and Tu, C.H., Determination of Fracture Toughness of Anisotropic Rocks by Boundary Element Method, Rock Mechanics and Rock Engineering, 2008, 41, pp. 509–538.

    Article  Google Scholar 

  60. Dai, F., Wei, M.D., Xu, N.W., Zhao, T., and Xu, Y., Numerical Investigation of the Progressive Fracture Mechanisms of Four ISRM-Suggested Specimens for Determining the Mode I Fracture Toughness of Rocks, Comput. Geotech., 2015, 69, pp. 424–441.

    Article  Google Scholar 

  61. Xu, N.W., Dai, F., Wei, M.D., Xu, Y., and Zhao, T., Numerical Observation of Three Dimensional Wing-Cracking of Cracked Chevron Notched Brazilian Disc Rock Specimen Sbjected to Mixed Mode Loading, Rock Mech. Rock Eng., 2015, vol. 49, pp. 79–96.

    Article  Google Scholar 

  62. Yaylac, M., The Investigation of Crack Problem through Numerical Analysis, Structural Engineering and Mechanics, An Int’l Journal, 2016, vol. 57, no. 6.

    Google Scholar 

  63. ASTM, Test Method for Unconfined Compressive Resistance of Intact Rock Core Specimens, ASTM Designation, D2938-86, 1986.

    Google Scholar 

  64. ASTM, Standard Method of Test for Splitting Tensile Resistance of Cylindrical Concrete Specimens, ASTM Designation, C496-71, 1971.

    Google Scholar 

  65. Itasca PFC2D, Particle Flow Code in 2 Dimensions, Theory and Background, Itasca Consulting Group, Minneapolis, MN, 1999, pp. 1–124.

    Google Scholar 

  66. Potyondy, D.O. and Cundall, P.A., A bonded-particle model for rock, Int. J. Rock Mech. Min. Sci., 2004, 41, pp. 1329–1364.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Haeri.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haeri, H., Sarfarazi, V., Hedayat, A. et al. Effect of tensile strength of rock on tensile fracture toughness using experimental test and PFC2D simulation. J Min Sci 52, 647–661 (2016). https://doi.org/10.1134/S1062739116041046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739116041046

Keywords

Navigation