Skip to main content
Log in

Abnormal floral meristem development in transgenic tomato plants do not depend on the expression of genes encoding defense-related PR-proteins and antimicrobial peptides

  • Biology of Plant Development
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

In this study, the morphological and cytoembryological analyses of the tomato plants transformed with the genes encoding chitin-binding proteins (ac and RS-intron-Shir) from Amaranthus caudatus L. and A. retroflexus L., respectively, as well as the gene amp2 encoding hevein-like antimicrobial peptides from Stellaria media L., have been performed. The transgenic lines were adapted to soil and grown in the greenhouse. The analysis of putative transgenic tomato plants revealed several lines that did not differ phenotypically from the wild type plants and three lines with disruption in differentiation of the inflorescence shoot and the flower, as well as the fruit formation (modified plants of each line were transformed with a single gene as noted before). Abnormalities in the development of the generative organs were maintained for at least six vegetative generations. These transgenic plants were shown to be defective in the mail gametophyte formation, fertilization, and, consequently, led to parthenocarpic fruits. The detailed analysis of growing ovules in the abnormal transgenic plants showed that the replacement tissue was formed and proliferated instead of unfertilized embryo sac. The structure of the replacement tissue differed from both embryonic and endosperm tissue of the normal ovule. The formation of the replacement tissue occurred due to continuing proliferation of the endothelial cells that lost their ability for differentiation. The final step in the development of the replacement tissue was its death, which resulted in the cell lysis. The expression of the genes used was confirmed by RTPCR in all three lines with abnormal phenotype, as well as in several lines that did not phenotypically differ from the untransformed control. This suggests that abnormalities in the organs of the generative sphere in the transgenic plants do not depend on the expression of the foreign genes that were introduced in the tomato genome. Here, we argue that agrobacterial transformation affects, directly or indirectly, expression of genes encoding for transcription factors that can activate a gene cascade responsible for the normal plant development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ampomah-Dwamena, C., Morris, B.A., Sutherland, P., et al., Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion, Plant Physiol., 2002, vol. 130, no. 2, pp. 605–617.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Avivi, Y., Lev-Yadun, S., Morozova, N., et al., Clausa, a tomato mutant with a wide range of phenotypic perturbations, displays a cell type-dependent expression of the homeobox gene LeT6/TKn2, Plant Physiol., 2000, vol. 124, no. 2, pp. 541–551.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bannikova, V.P., Tsitoembriologiya mezhvidovoi nesovmestimosti u rastenii (Cytoembryology of Interspecific Incompatibility in Plants), Kiev: Naukova dumka, 1975.

    Google Scholar 

  • Bavrina, T.V., Milyaeva, E.L., Getman, I.A., et al., Manifestation and inheritance of tpd1 phenotype in the tobacco insertion mutant with extended flowering period, Russ. J. Plant Physiol., 2007, vol. 54, no. 5, pp. 646–652.

    Article  CAS  Google Scholar 

  • Bhatia, P. and Ashwath, N., Comparative performance of micropropagated and seed-grown tomato plants, Biol. Plant., 2004, vol. 48, no. 4, pp. 625–628.

    Article  Google Scholar 

  • Bianchi, A. and Soressi, G.P., Mutanti di pomodoro articialmente indotti suscettibili di utilizzazione nel miglioramento genetic, Sementi Elette XV, 1969, vol. 3, pp. 2–6.

    Google Scholar 

  • Bourdon, M., Coriton, O., Pirrello, J., et al., In planta quantification of endoreduplication using fluorescent in situ hybridization (fish), J. Plant Sci., 2011, vol. 66, no. 6, pp. 1089–1099.

    CAS  Google Scholar 

  • Cassells, A.C. and Curry, R.F., Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers, Plant Cell, Tiss. Organ Cult., 2001, vol. 64, pp. 145–157.

    Article  CAS  Google Scholar 

  • Castle, L.A. and Meinke, D.W., A FUSCA gene of Arabidopsis encodes a novel protein essential for plant development, Plant Cell, 1994, vol. 6, no. 1, pp. 25–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheniclet, C., Rong, W.Y., Causse, M., et al., Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth, Plant Physiol., 2005, vol. 139, no. 4, pp. 1984–1994.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chyi, Y.S., Jorgensen, R.A., Goldstein, D., et al., Locations and stability of Agrobacterium-mediated transfer DNA insertions in the Lycopersicon genome, Mol. Gen. Genet., 1986, vol. 204, no. 1, pp. 64–69.

    Article  CAS  Google Scholar 

  • Colombo, M., Masiero, S., Vanzulli, S., et al., AGL23, a type I MADS-box gene that controls female gametophyte and embryo development in Arabidopsis, Plant J., 2008, vol. 54, no. 6, pp. 1037–1048.

    Article  CAS  PubMed  Google Scholar 

  • Cooper, D.C. and Brink, R.A., Seed collapse following matings between diploid and tetraploid races of Lycopersicon pimpinellifolium, Genetics, 1945, vol. 30, pp. 376–401.

    CAS  PubMed  Google Scholar 

  • Cristea, T.O., Prisecaru, M., and Clin, M., A comparative study regarding some phenotypic and genetic features in vitro micropropagated and seed-borne tomato (Lycopersicon esculentum Mill.) plants, Sci. Studies and Res. Ser. Biology, vol. 18, pp. 51–54.

  • Deineko, E.V., Zagorskaya, A.A., and Shumny, V.K., T-DNA-induced mutations in transgenic plants, Russ. J. Genet., 2003, vol. 43, no. 1, pp. 5–17.

    Google Scholar 

  • Enikeev, A.G., Kopytina, T.V., Semenova, L.A., et al., Agrobacterial transformation as complex biotical factor, J. Stress Physiol. Biochem., 2008, vol. 4, no. 1, pp. 11–19.

    Google Scholar 

  • Evans, D.A., Sharp, W.R., and Medina-Filho, H.P., Somaclonal and gametoclonal variation, Am. J. Bot., 1984, vol. 71, no. 6, pp. 759–774.

    Article  Google Scholar 

  • Feldmann, K.A., T-DNA insertion mutagenesis in Arabidopsis: mutation spectrum, Plant J., 1991, vol. 1, no. 1, pp. 71–82.

    Article  CAS  Google Scholar 

  • Gaffe, J., Lemercier, C., Alcaraz, J.P., et al., Identification of three tomato flower and fruit mads-box proteins with a putative histone deacetylase binding domain, Gene, 2011, vol. 471, pp. 19–26.

    Article  CAS  PubMed  Google Scholar 

  • Gorquet, B., van Heusden, A.W., and Lindhout, P., Parthenocarpic fruit development in tomato, Plant Biol., 2005, vol. 7, no. 2, pp. 131–139.

    Article  Google Scholar 

  • Gramzow, L. and Theissen, G.A., A hitchhiker’s guide to the MADS world of plants, Genome Biol., 2010, vol. 11, no. 6, pp. 214–224.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gustafson, F.G., Parthenocarpy induced by pollen extracts, Am. J. Bot., 1937, vol. 24, no. 2, pp. 102–107.

    Article  CAS  Google Scholar 

  • Hirayama, T. and Shinozaki, K., Research on plant abiotic stress responses in the post-genome era: past, present and future, Plant J., 2010, vol. 61, no. 6, pp. 1041–1052.

    Article  CAS  PubMed  Google Scholar 

  • Jain, S.M., Tissue culture-derived variation in crop improvement, Euphytica, 2001, vol. 118, no. 2, pp. 153–166.

    Article  CAS  Google Scholar 

  • de Jong, M., Mariani, C., and Vriezen, W.H., The role of auxin and gibberellin in tomato fruit set, J. Exp. Bot., 2009, vol. 60, no. 5, pp. 1523–1532.

    Article  PubMed  Google Scholar 

  • Kaeppler, S.M., Kaeppler, H.F., and Rhee, Y., Epigenetic aspects of somaclonal variation in plants, Plant Mol. Biol., 2000, vol. 43, pp. 179–188.

    Article  CAS  PubMed  Google Scholar 

  • Kataoka, K., Uemachi, A., and Yazawa, S., Fruit growth and pseudoembryo development affected by uniconazole, an inhibitor of gibberellin biosynthesis, in pat-2 and auxin-induced parthenocarpic tomato fruits, Sci. Hort., 2003, vol. 98, no. 1, pp. 9–16.

    Article  CAS  Google Scholar 

  • Khaliluev, M.R., Kharchenko, P.N., and Dolgov, S.V., Genetic transformation of tomato (Solanum lycopersicum L.) with genes enconding chitin-binding protective proteins and antimicrobial peptides, Izv. TSKhA, 2010, no. 6, pp. 75–83.

    Google Scholar 

  • Khaliluev, M.R., Mamonov, A.G., Smirnov, A.N., et al., Expression of genes encoding chitin-binding proteins (PR-4) and hevein-like antimicrobial peptides in transgenic tomato plants enhanced resistanse to Phytophthora infestanse, Russ. Agricult. Sci., 2011, vol. 37, no. 4, pp. 297–302.

    Article  Google Scholar 

  • Koncz, C., Nemeth, K., Redei, G.P., et al., T-DNA insertional mutagenesis in Arabidopsis, Plant. Mol. Biol., 1992, vol. 20, pp. 963–976.

    Article  CAS  PubMed  Google Scholar 

  • Lin, Z., Arciga-Reyes, L., Zhong, S., et al., SITPR1, a tomato tetratricopeptide repeat protein, interacts with the ethylene receptors NR and LEETR1, modulating ethylene and auxin responses and development, J. Exp. Bot., 2008, vol. 59, no. 15, pp. 4271–4287.

    Article  CAS  PubMed  Google Scholar 

  • Maniatis, T., Frisch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab., 1982.

    Google Scholar 

  • Mathieu-Rivet, E., Gevaudant, F., Cheniclet, C., et al., The anaphase promoting complex activator CCS52A, a key factor for fruit growth and endoreduplication in tomato, Plant Signaling Behavior, 2010, vol. 5, no. 8, pp. 985–987.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue culture, Physiol. Plant., 1962, vol. 15, no. 3, pp. 473–497.

    Article  CAS  Google Scholar 

  • Ohshima, S., Murata, M., Sanamoto, W., et al., Cloning and molecular analysis of Arabidopsis gene Terminal Flower 1, Mol. Gen. Genet., 1997, vol. 254, no. 2, pp. 186–194.

    Article  CAS  PubMed  Google Scholar 

  • Osman, M.G. and Khalafalla, M.M., Promotion of in vitro shoot formation from shoot tip of tomato (Lycopersicon esculentum Mill. cv. Omdurman) by ethylene inhibitors, Int. J. Curr. Res., 2010, vol. 4, pp. 082–086.

    Google Scholar 

  • Poddubnaya-Arnol’di, V.A., Tsitoembriologiya pokrytosemennykh rastenii. Osnovy i perspektivy (Cytoembryology of Angiosperms: Foundations and Prospects), Moscow: Nauka, 1976.

    Google Scholar 

  • Serrani, J.C., Fos, M., Atares, A., et al., Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the cv. Micro-tom of tomato, J. Plant Growth Regulation, 2007, vol. 26, no. 3, pp. 211–221.

    Article  CAS  Google Scholar 

  • Serrani, J.C., Ruiz-Rivero, O., Fos, M., et al., Auxininduced fruit-set in tomato is mediated in part by gibberellins, Plant J., 2008, vol. 56, no. 6, pp. 922–934.

    Article  CAS  PubMed  Google Scholar 

  • Tinland, B., The integration of T-DNA into plant genomes, Trends Plant Sci., 1996, vol. 1, no. 6, pp. 178–183.

    Article  Google Scholar 

  • Tzfira, T., Li, J., Lacroix, B., et al., Agrobacterium T-DNA integration: molecules and models, Trends Genet., 2004, vol. 20, no. 8, pp. 375–383.

    Article  CAS  PubMed  Google Scholar 

  • Veilleux, R.E. and Johnson, A.A.T., Somaclonal variation: molecular analysis, transformation interaction, and utilization, Plant Breed. Rev., 1998, vol. 16, pp. 229–268.

    CAS  Google Scholar 

  • Wang, Y.-H. and Campbell, M.A., Agrobacterium-mediated transformation of tomato elicits unexpected flower phenotypes with similar gene expression profiles, PLoS One, 2008, vol. 3, no. 8, pp. 1–7.

    CAS  Google Scholar 

  • Wickley, B., Elektronnaya mikroskopiya dlya nachinayushchikh (Electron Microscopy for Beginners), Moscow: Mir, 1975.

    Google Scholar 

  • Wilson, A.K., Latham, J.R., and Steinbrecher, R.A., Transformation-induced mutations in transgenic plants: analysis and biosafety implications, Biotech. Gen. Engineer. Rev., 2006, vol. 23, pp. 209–237.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Khaliluev.

Additional information

Original Russian Text © M.R. Khaliluev, I.A. Chaban, N.V. Kononenko, E.N. Baranova, S.V. Dolgov, P.N. Kharchenko, V.Yu. Polyakov, 2014, published in Ontogenez, 2014, Vol. 45, No. 1, pp. 28–41.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khaliluev, M.R., Chaban, I.A., Kononenko, N.V. et al. Abnormal floral meristem development in transgenic tomato plants do not depend on the expression of genes encoding defense-related PR-proteins and antimicrobial peptides. Russ J Dev Biol 45, 22–33 (2014). https://doi.org/10.1134/S1062360414010044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360414010044

Keywords

Navigation