Skip to main content
Log in

On the classification of the cleavage patterns in amphibian embryos

  • Reviews
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

This paper presents a brief survey and preliminary classification of embryonic cleavage patterns in the class Amphibia. We use published data on 41 anuran and 22 urodele species concerning the character of the third cleavage furrow (latitudinal or longitudinal) and the stage of transition from synchronous to asynchronous blastomere divisions in the animal hemisphere (4–8-celled stage, 8–16-celled stage or later). Based on this, four patterns of amphibian embryonic cleavage are recognized, and an attempt to elucidate the evolutionary relationships among these patterns is undertaken. The so-called “standard” cleavage pattern (the extensive series of synchronous blastomere divisions including latitudinal furrows of the third cleavage) with the typical model species Ambystoma mexicanum and Xenopus laevis seems to be derived and probably originated independently in the orders Anura and Caudata. The ancestral amphibian cleavage pattern seems to be represented by species with longitudinal furrows of the third cleavage and the loss of synchrony as early as the 8-celled stage (such as in primitive urodele species from the family Cryptobranchidae).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • D’Amen, M., Vignoli, L., and Bologna, M.A., The normal development and the chromosome no. 1 syndrome in Triturus carnifex carnifex (Caudata, Salamandridae), Ital. J. Zool., 2006, vol. 73, pp. 325–333.

    Google Scholar 

  • AmphibiaWeb. Information on amphibian biology and conservation, Berkeley (California): Electronic database accessible at http://amphibiaweb.org/, 2013 (Captured on March 11, 2013).

    Google Scholar 

  • Andéol, Y., Early transcription in different animal species: implication for transition from maternal to zygotic control in development, Wilhelm Roux’s Arch. Dev. Biol., 1994, vol. 204, pp. 3–10.

    Google Scholar 

  • Anderson, P.L., The normal development of Triturus pyrrhogaster, Anat. Rec., 1943, vol. 86, pp. 59–73.

    Google Scholar 

  • Anstis, M., Roberts, J.D., and Altig, R., Direct development in two myobatrachid frogs, Arenophryne rotunda Tyler and Myobatrachus gouldii Gray, from Western Australia, Rec. West. Austral. Mus., 2007, vol. 23, pp. 259–271.

    Google Scholar 

  • de Bavay, J.M., The developmental stages of the sphagnum frog, Kyarranus sphagnicolus Moore (Anura: Myobatrachidae), Aust. J. Zool., 1993, vol. 41, pp. 151–201.

    Google Scholar 

  • Bjerknes, M., Physical theory of the orientation of astral mitotic spindles, Science, 1986, vol. 234, pp. 1413–1416.

    CAS  PubMed  Google Scholar 

  • Bordzilovskaya, N.P. and Dettlaff, T.A., Axolotl Ambystoma mexicanum Cope, in Ob”ekty biologii razvitiya (Objects of Developmental Biology), Moscow: Nauka, 1975, pp. 370–391.

    Google Scholar 

  • Bragg, A.N., The organization of the early embryo of Bufo cognatus as revealed especially by the mitotic index, Z. Zellforsch. Mikr. Anat., 1938, vol. 28, pp. 154–178.

    Google Scholar 

  • Bragg, A.N., Some cytological phenomena in early embryos of Bufo cognatus (Say), Trans. Amer. Micr. Soc., 1939, vol. 58, pp. 357–370.

    Google Scholar 

  • Brinkmann, H., Denk, A., Zitzler, J., et al., Complete mitochondrial genome sequences of the South American and the Australian lungfish: testing of the phylogenetic performance of mitochondrial data sets for phylogenetic problems in tetrapod relationships, J. Mol. Evol., 2004a, vol. 59, pp. 834–848.

    CAS  PubMed  Google Scholar 

  • Brinkmann, H., Venkatesh, B., Brenner, S., et al., Nuclear protein-coding genes support lungfish and not the coelacanth as the closest living relatives of land vertebrates, Proc. Nat. Acad. Sci. USA, 2004b, vol. 101, pp. 4900–4905.

    CAS  PubMed  Google Scholar 

  • Brown, H.A., Temperature and development of the tailed frog, Ascaphus truei, Comp. Biochem. Physiol., 1975, vol. 50, pp. 397–405.

    CAS  Google Scholar 

  • Brown, H.A., Developmental anatomy of the tailed frog (Ascaphus truei): a primitive frog with large eggs and slow development, J. Zool., 1989, vol. 217, pp. 525–537.

    Google Scholar 

  • de Bussy, L.P., Die ersten Entwicklungsstadien des Megalobatrachus maximus, Zool. Anz., 1905, vol. 28, pp. 523–536.

    Google Scholar 

  • Cambar, R. and Marrot, B., Table chronologique du developpement de la grenouille agile (Rana dalmatina Bon.), Bull. Biol. France Belg., 1954, vol. 88, pp. 168–177.

    Google Scholar 

  • Cambar, R. and Gipouloux, J.-D., Table chronologique du developpement embryonnaire et larvaire du crapaud commun: Bufo bufo L., Bull. Biol. France Belg., 1956, vol. 90, pp. 198–217.

    Google Scholar 

  • Chakravarty, P., Bordoloi, S., Grosjean, S., et al., Tadpole morphology and table of developmental stages of Polypedates teraiensis, Alytes, 2011, vol. 27, pp. 85–115.

    Google Scholar 

  • Collazo, A. and Marks, S.B., Development of Gyrinophilus porphyriticus: identification of the ancestral developmental pattern in the salamander family Plethodontidae, J. Exp. Zool., 1994, vol. 268, pp. 239–258.

    Google Scholar 

  • Collazo, A. and Keller, R., Early development of Ensatina eschscholtzii: an amphibian with a large, yolky egg, EvoDevo, 2010, vol. 1: 6. doi: 10.1186/2041-9139-1-6

    Google Scholar 

  • del Conte, E. and Sirlin, J.L., Pattern series of the first embryonary stages in Bufo arenarum, Anat. Rec., 1952, vol. 112, pp. 125–135.

    Google Scholar 

  • Dabagyan, N.V. and Sleptsova, L.A., Common frog Rana temporaria L., in Ob”ekty biologii razvitiya (Objects of Developmental Biology), Moscow: Nauka, 1975, pp. 442–462.

    Google Scholar 

  • Dan, K., Cyto-embryology of echinoderms and amphibia, Int. Rev. Cytol., 1960, vol. 9, pp. 321–367.

    CAS  PubMed  Google Scholar 

  • Desnitskiy, A.G., Evolutionary reorganizations of ontogenesis in related frog species of the family Myobatrachidae, Russ. J. Dev. Biol., 2010, vol. 41, no. 3, pp. 133–139.

    Google Scholar 

  • Desnitskiy, A.G., On the diversity of the primary steps of embryonic development in the caudate amphibians, Russ. J. Dev. Biol., 2011b, vol. 42, no. 4, pp. 207–211.

    Google Scholar 

  • Desnitskiy, A.G., Ontogenetic diversity and early development of frogs in the south American family Cycloramphidae, Phyllomedusa, 2011a, vol. 10, pp. 7–13.

    Google Scholar 

  • Desnitskiy, A.G., On the diversity of the initial steps of embryonic development in anuran amphibians, Russ. J. Herpetol., 2012, vol. 19, pp. 221–231.

    Google Scholar 

  • Dettlaff, T.A., Temperaturno-vremennye zakonomernosti razvitiya poikilotermnykh zhivotnykh (Time-Temperature Patterns of Development of Poikilotherms), Moscow: Nauka, 2001.

    Google Scholar 

  • Dettlaff, T.A. and Rudneva, T.B., African clawed frog Xenopus laevis Daudin, in Ob”ekty biologii razvitiya (Objects of Developmental Biology), Moscow: Nauka, 1975, pp. 392–441.

    Google Scholar 

  • Duellman, W.E., On the classification of frogs, Occasional Papers Mus. Nat. Hist. Univ. Kansas, 1975, no. 42, pp. 1–14.

    Google Scholar 

  • Duellman, W.E., Reproductive modes in anuran amphibians: phylogenetic significance of adaptive strategies, South Afr. J. Sci., 1985, vol. 81, pp. 174–178.

    Google Scholar 

  • Duellman, W.E. and Trueb, L., The Biology of Amphibians, Baltimore-London: Johns Hopkins Univ. Press, 1994.

    Google Scholar 

  • Elinson, R.P. and del Pino, E.M., Cleavage and gastrulation in the egg-brooding, marsupial frog, Gastrotheca riobambae, J. Embryol. Exp. Morphol., 1985, vol. 90, pp. 223–232.

    CAS  PubMed  Google Scholar 

  • Elinson, R.P., Nutritional endoderm: a way to breach the holoblastic-meroblastic barrier in tetrapods, J. Exp. Zool., 2009, vol. 312B, pp. 526–532.

    Google Scholar 

  • Elinson, R.P. and del Pino, E.M., Developmental diversity of amphibians, Wiley Interdisciplinary Reviews: Devel. Biol., 2012, vol. 1, pp. 345–369.

    CAS  Google Scholar 

  • Epperlein, H.H. and Junginger, M., The normal development of the newt, Triturus alpestris (Daudin), Amphibia-Reptilia, 1982, vol. 2, pp. 295–308.

    Google Scholar 

  • Eycleshymer, A.C., The early development of Amblystoma, with observations on some other vertebrates, J. Morphol., 1895, vol. 10, pp. 343–418.

    Google Scholar 

  • Eycleshymer, A.C., Bilateral symmetry in the egg of Necturus, Anat. Anz., 1904, vol. 25, pp. 230–240.

    Google Scholar 

  • Eycleshymer, A.C. and Wilson, J.M., Normal Plates of the Development of Necturus maculosus, Jena: (Germany): Verlag von Gustav Fischer, 1910.

    Google Scholar 

  • Fankhauser, G., Urodeles, in Methods in Developmental Biology, Wilt, F.H. and Wessels, N.K., Eds., New York: Thomas Y. Crowell Comp., 1967, pp. 85–99.

    Google Scholar 

  • Feng, X.I.E., Liang, F.E.I., Cheng, L.I., et al., The preliminary studies on the early development of the Chinhai salamander, Echinotriton chinhaiensis, Chin. J. Zool., 2001, vol. 36, pp. 21–25.

    CAS  Google Scholar 

  • Gallien, L. and Houillon, C., Table chronologique du développement chez Discoglossus pictus, Bull. Biol. France Belg., 1951, vol. 85, pp. 373–375.

    Google Scholar 

  • Gallien, L. and Durocher, M., Table chronologique du développement chez Pleurodeles waltlii Michah, Bull. Biol. France Belg., 1957, vol. 91, pp. 97–114.

    Google Scholar 

  • Gallien, L. and Bidaud, O., Table chronologique du développement chez Triturus helveticus Razoumowsky, Bull. Soc. Zool. Fr., 1959, vol. 84, pp. 22–32.

    Google Scholar 

  • Gilbert, S.F., Developmental Biology, 9th ed., Sunderland (Massachusetts): Sinauer Assoc. Inc., 2010.

    Google Scholar 

  • Gitlin, D., The development of Eleutherodactylus portoricensis, Copeia, 1944, no. 2, pp. 91–98.

    Google Scholar 

  • Goodale, H.D., The early development of Spelerpes bilineatus (Green), Amer. J. Anat., 1911, vol. 12, pp. 173–247.

    Google Scholar 

  • Grenat, P.R., Gallo, L.M.Z., Salas, N.E., et al., External changes in embryonic and larval development of Odontophrynus cordobae Martino et Sinsch, 2002 (Anura: Cycloramphidae), Biologia (Bratislava), 2011, vol. 66, pp. 1148–1158.

    Google Scholar 

  • Grönroos, H., Zur Entwickelungsgeschichte des Erdsalamanders (Salamandra maculosa Laur.), Anat. Hefte, 1895, vol. 6, pp. 153–247.

    Google Scholar 

  • Haddad, C.F.B. and Prado, C.P.A., Reproductive modes in frogs and their unexpected diversity in the Atlantic forest of brazil, BioScience, 2005, vol. 55, pp. 207–217.

    Google Scholar 

  • Hara, K. and Boterenbrood, E.C., Refinement of Harrison’s normal table for the morula and blastula of the axolotl, Wilhelm Roux’s Arch. Dev. Biol., 1977, vol. 181, pp. 89–93.

    Google Scholar 

  • Hara, K., The cleavage pattern of the axolotl egg studied by cinematography and cell counting, Wilhelm Roux’s Arch. Dev. Biol., 1977, vol. 181, pp. 73–87.

    Google Scholar 

  • Harrison, R.G., Amblystoma punctatum, in Experimental Embryology. Techniques and Procedures, 3rd ed., Rugh, R., Ed., Minneapolis (Minnesota): Burgess Publ. Comp., 1962, pp. 82–87.

    Google Scholar 

  • Hilton, W.A., General features of the early development of Desmognathus fusca, J. Morphol., 1909, vol. 20, pp. 533–559.

    Google Scholar 

  • Humphrey, R.R., Ovulation in the four-toed salamander, Hemidactylium scutatum, and the external features of cleavage and gastrulation, Biol. Bull., 1928, vol. 54, pp. 307–323.

    Google Scholar 

  • Iwasawa, H. and Kawasaki, N., Normal stages of development of the Japanese green frog Rhacophorus arboreus (Okada et Kawano), Japan. J. Herpetol., 1979, vol. 8, pp. 22–35.

    Google Scholar 

  • Iwasawa, H. and Futagami, J., Normal stages of development of a tree frog, Hyla japonica Günther, Japan. J. Herpetol., 1992, vol. 14, pp. 129–142.

    Google Scholar 

  • Iwasawa, H. and Kera, Y., Normal stages of development of the Japanese lungless salamander, Onychodactylus japonicus (Houttuyn), Japan. J. Herpetol., 1980, vol. 8, pp. 73–89.

    Google Scholar 

  • Jacobson, C.M., Developmental variation within the genus Pseudophryne fitzinger, Proc. Linn. Soc. New South Wales, 1963, vol. 88, pp. 277–286.

    Google Scholar 

  • Jorquera, B., Pugin, E., and Goicoechea, O., Tabla de desarrollo normal de Rhinoderma darwini, Arch. Med. Veterinaria (Valdivia, Chile), 1972, vol. 4, pp. 1–15.

    Google Scholar 

  • Jorquera, B., Pugin, E., and Goicoechea, O., Tabla de desarrollo normal de Rhinoderma darwini (Concepción), Bol. Soc. Biol. Concepcion (Chile), 1974, vol. 48, pp. 127–146.

    Google Scholar 

  • Kemp, A., The embryological development of the Queensland lungfish, Neoceratodus forsteri (Krefft), Mem. Queensland Mus., 1982, vol. 20, pp. 553–597.

    Google Scholar 

  • Kerr, J.G., The external features in the development of Lepidosiren paradoxa, Fitz., Phil. Trans. Roy. Soc., London: Ser. B, 1900, vol. 192, pp. 299–330.

    Google Scholar 

  • Khan, M.S., A normal table of Bufo melanostictus Schneider, Biologia (Lahore), 1965, vol. 11, pp. 1–39.

    Google Scholar 

  • Khan, P.A. and Liversage, R.A., Development of Notophthalmus viridescens embryos, Devel. Growth Differ., 1995, vol. 37, pp. 529–537.

    Google Scholar 

  • Kirschner, M., Newport, J., and Gerhart, J., The timing of early developmental events in Xenopus, Trends Genet., 1985, vol. 1, pp. 41–47.

    Google Scholar 

  • Knight, F.C.E., Die Entwicklung von Triton alpestris bei verschiedenen Temperaturen, mit Normentafel, Wilhelm Roux’s Arch. Dev. Biol., 1938, vol. 137, pp. 461–473.

    Google Scholar 

  • Kunitomo, K., über die Entwickelungsgeschichte des Hynobius nebulosus, Anat. Hefte, 1910, vol. 40, pp. 193–283.

    Google Scholar 

  • Lamotte, M. and Lescure, J., Tendances adaptatives a l’affranchissement du milieu aquatique chez les amphibiens anoures, Terre et Vie, 1977, vol. 31, pp. 225–311.

    Google Scholar 

  • Landström, U., Løvtrup-Rein, U., and Løvtrup, S., Control of cell division and cell differentiation by deoxynucleotides in the early embryo of Xenopus laevis, Cell Differ., 1975, vol. 4, pp. 313–325.

    PubMed  Google Scholar 

  • Leon-Ochoa, J. and Donoso-Barros, R., Desarrollo embryonario y metamorfosis de Pleurodema brachyops (Cope) (Salientia-Leptodactylidae), Bol. Soc. Biol. Concepción (Chile), 1970, vol. 42, pp. 355–379.

    Google Scholar 

  • Limbaugh, B.A. and Volpe, P., Early development of the gulf coast toad, Bufo valliceps Wiegmann, Amer. Mus. Novit., 1957, no. 1842, pp. 1–32.

    Google Scholar 

  • Liozner, L.D., Tritons Triturus vulgaris and Tr. cristatus, in Ob”ekty biologii razvitiya (Objects of Developmental Biology), Moscow: Nauka, 1975, pp. 324–341.

    Google Scholar 

  • Luo, J., Xiao, Y., Luo, K., et al., Embryonic development and organogenesis of Chinese giant salamander, Andrias davidianus, Progr. Nat. Sci., 2007, vol. 17, pp. 1303–1311.

    Google Scholar 

  • Marks, S.B. and Collazo, A., Direct development in Desmognathus aeneus (Caudata: Plethodontidae): a staging table, Copeia, 1998, no. 3, pp. 637–648.

    Google Scholar 

  • Michael, P., A normal table of early development in Bombina orientalis (Boulenger), in relation to rearing temperature, Devel. Growth Differ., 1981, vol. 23, pp. 149–155.

    Google Scholar 

  • Miller, A.E., The cleavage of the egg of Lepidosiren paradoxa, Quart. J. Micr. Sci., 1923, vol. 67, pp. 497–505.

    Google Scholar 

  • Narzary, J. and Bordoloi, S., Study of normal development and external morphology of tadpoles of Microhyla ornata and Uperodon globulosus of the family Microhylidae (Amphibia: Anura) from North East India, Int. J. Adv. Biol. Res., 2013, vol. 3, pp. 61–73.

    Google Scholar 

  • Newport, J. and Kirschner, M., A major developmental transition in early Xenopus embryos: 1. Characterization and timing of cellular changes at the midblastula stage, Cell, 1982a, vol. 30, pp. 675–686.

    CAS  PubMed  Google Scholar 

  • Newport, J. and Kirschner, M., A major developmental transition in early Xenopus embryos: 2. Control of the onset of transcription, Cell, 1982b, vol. 30, pp. 687–696.

    CAS  PubMed  Google Scholar 

  • Nieuwkoop, P.D. and Faber, J., Normal Table of Xenopus laevis (Daudin): Systematic and Chronological Survey of the Development from the Fertilized Egg till the End of Metamorphosis, New York: Garland Publ. Inc., 1994.

    Google Scholar 

  • Packer, W.C., Embryonic and larval development of Heleioporus eyrei (Amphibia: Leptodactylidae), Copeia, 1966, no. 1, pp. 92–97.

    Google Scholar 

  • Padhye, A.D. and Ghate, H.V., Preliminary photographic record and description of various developmental stages of the frog Microhyla ornata (Dumeril and Birbon), Herpeton (Pune, India), 1989, vol. 2, pp. 2–7.

    Google Scholar 

  • Pan, J. and Liang, D., Studies of the early embryonic development of Rana rugulosa Wiegmann, Asiatic Herpetol. Res., 1990, vol. 3, pp. 85–100.

    Google Scholar 

  • Panter, H.C., Variation of radiosensitivity during development of the frog Limnodynastes tasmaniensis, J. Exp. Zool., 1986, vol. 238, pp. 193–199.

    Google Scholar 

  • del Pino, E.M. and Elinson, R.P., The organizer in amphibians with large eggs: problems and perspectives, in The Vertebrate Organizer, Grunz, H., Ed., Berlin: Springer, 2003, pp. 359–374.

    Google Scholar 

  • del Pino, E.M. and Escobar, B., Embryonic stages of Gastrotheca riobambae (Fowler) during maternal incubation and comparison of development with that of other eggbrooding hylid frogs, J. Morphol., 1981, vol. 167, pp. 277–295.

    PubMed  Google Scholar 

  • del Pino, E.M. and Loor-Vela, S., The pattern of early cleavage of the marsupial frog Gastrotheca riobambae, Development, 1990, vol. 110, pp. 781–789.

    PubMed  Google Scholar 

  • del Pino, E.M., Avila, M.E., Pérez, O.D., et al., Development of the dendrobatid frog Colostethus machalilla, Int. J. Devel. Biol., 2004, vol. 48, pp. 663–670.

    Google Scholar 

  • Pollister, A.W. and Moore, J.A., Tables for the normal development of Rana sylvatica, Anat. Rec., 1937, vol. 68, pp. 489–496.

    Google Scholar 

  • Ramaswami, L.S. and Lakshman, A.B., The skipper-frog as a suitable embryological animal and an account of the action of mammalian hormones on spawning the same, Proc. Nat. Inst. Sci. India, 1959, vol. 25B, pp. 68–79.

    Google Scholar 

  • Roberts, J.D., Terrestrial breeding in the Australian leptodactylid frog Myobatrachus gouldii (Gray), Austral. Wildlife Res., 1981, vol. 8, pp. 451–462.

    Google Scholar 

  • Roelants, K. and Bossuyt, F., Archaeobatrachian paraphyly and pangaean diversification of crown-group frogs, Syst. Biol., 2005, vol. 54, pp. 111–126.

    PubMed  Google Scholar 

  • Romero-Carvajal, A., Saenz-Ponce, N., Venegas-Ferrin, M., et al., Embryogenesis and laboratory maintenance of the foam-nesting tungara frogs, genus Engystomops (=Physalaemus), Devel. Dyn., 2009, vol. 238, pp. 1444–1454.

    CAS  Google Scholar 

  • Rugh, R., The Frog; Its Reproduction and Development, Philadelphia: Blakiston Comp, 1951.

    Google Scholar 

  • Rugh, R., Experimental Embryology. Techniques and Procedures, 3rd ed., Minneapolis (Minnesota): Burgess Publ. Com., 1962.

    Google Scholar 

  • Saha, B.K. and Gupta, B.B.P., The development and metamorphosis of an endangered frog, Rana leptoglossa (Cope, 1868), Int. J. Adv. Biol. Res., 2011, vol. 1, pp. 67–76.

    Google Scholar 

  • Sailo, S., Studies on the ecology and biology of Rana alticola (Boulenger), Ph. D. Thesis, Shillong (India): North-Eastern Hill Univ., 2010.

    Google Scholar 

  • Salthe, S.N., Reproductive modes and the number and sizes of ova in the urodeles, Amer. Midl. Nat., 1969, vol. 81, pp. 467–490.

    Google Scholar 

  • Sayim, F. and Kaya, U., Embryonic development of the tree frog, Hyla arborea, Biologia (Bratislava), 2008, vol. 63, pp. 588–593.

    Google Scholar 

  • Schönmann, W., Der diploide Bastard Triton palmatus × Salamandra, Wilhelm Roux’s Arch. Dev. Biol., 1938, vol. 138, pp. 345–375.

    Google Scholar 

  • Schrenkenberg, G.M. and Jacobson, A.G., Normal stages of development of the axolotl Ambystoma mexicanum, Devel. Biol., 1975, vol. 42, pp. 391–399.

    Google Scholar 

  • Shi, D.-L. and Boucaut, J.-C., The chronological development of the urodele amphibian Pleurodeles waltl (Michah), Int. J. Devel. Biol., 1995, vol. 39, pp. 427–441.

    CAS  Google Scholar 

  • Shimizu, S. and Ota, H., Normal development of Microhyla ornata: the first description of the complete embryonic and larval stages for the microhylid frogs (Amphibia: Anura), Curr. Herpetol., 2003, vol. 22, pp. 73–90.

    Google Scholar 

  • Shumway, W., Stages in the normal development of Rana pipiens. 1. External form, Anat. Rec., 1940, vol. 78, pp. 139–147.

    Google Scholar 

  • Signoret, J. and Lefresne, J., Contribution à l’étude de la segmentation de l’oeuf d’axolotl: 1. Définition de la transition blastuléenne, Ann. Embryol. Morphogen., 1971, vol. 4, pp. 113–123.

    Google Scholar 

  • Signoret, J. and Collenot, A., L’organisme en Développement. Des Gamètes à l’Embryon, Paris: Hermann, 1991.

    Google Scholar 

  • Slack, J.M.W., Essential Developmental Biology, Malden-Oxford-Carlton: Blackwell Publ. Comp., 2001.

    Google Scholar 

  • Smith, B.G., Preliminary report on the embryology of Cryptobranchus allegheniensis, Biol. Bull., 1906, vol. 11, pp. 146–164.

    Google Scholar 

  • Smith, B.G., The embryology of Cryptobranchus allegheniensis, including comparisons with some other vertebrates. 2. General embryonic and larval development, with special reference to external features, J. Morphol., 1912, vol. 23, pp. 455–565.

    Google Scholar 

  • Smith, B.G., The origin of bilateral symmetry in the embryo of Cryptobranchus allegheniensis, J. Morphol., 1922, vol. 36, pp. 357–399.

    Google Scholar 

  • Smith, B.G., The embryology of Cryptobranchus allegheniensis. 3. Formation of the blastula, J. Morphol. Physiol., 1926, vol. 42, pp. 197–252.

    Google Scholar 

  • Sussman, P. and Betz, T.W., Embryonic stages: morphology, timing, and variance in the toad Bombina orientalis, Can. J. Zool., 1978, vol. 56, pp. 1540–1545.

    CAS  PubMed  Google Scholar 

  • Suzuki, A., Kuwabara, Y., and Kuwana, T., Analysis of cell proliferation during early embryogenesis, Devel. Growth Differ., 1976, vol. 18, pp. 447–455.

    Google Scholar 

  • Svensson, G.S.O., Zur Kenntnis der Furchung bei den Gymnophionen, Acta Zool. (Stockholm), 1938, vol. 19, pp. 191–207.

    Google Scholar 

  • Sytina, L.A., Medvedeva, I.M., and Godina, L.B., Razvitie sibirskogo uglozuba (The Development of Siberian Salamander), Moscow: Nauka, 1987.

    Google Scholar 

  • Tripepi, S., Rossi, F., and Peluso, G., Embryonic development of the newt Triturus italicus in relation to temperature, Amphibia-Reptilia, 1998, vol. 19, pp. 345–355.

    Google Scholar 

  • Trowbridge, A.H. and Trowbridge, M.S., Notes on the cleavage rate of Scaphiopus bombifrons Cope, with additional remarks on certain aspects of its life history, Am. Nat., 1937, vol. 71, pp. 460–480.

    Google Scholar 

  • Trowbridge, M.S., Studies on the normal development of Scaphiopus bombifrons Cope. 1. The cleavage period, Trans. Amer. Micr. Soc., 1941, vol. 60, pp. 508–526.

    Google Scholar 

  • Twitty, V.C. and Bodenstein, D., Triturus torosus, in Experimental Embryology. Techniques and Procedures, 3rd ed., Rugh, R., Ed., Minneapolis (Minnesota): Burgess Publ. Comp, 1962, p. 90.

    Google Scholar 

  • Tyler, M.J., Australian Frogs: A Natural History, Ithaca, NY (New York): Cornell Univ. Press, 1998.

    Google Scholar 

  • Valles, J.M., Wasserman, S.R.R.M., Schweidenback, C., et al., Processes that occur before second cleavage determine third cleavage orientation in Xenopus, Exp. Cell Res., 2002, vol. 274, pp. 112–118.

    CAS  PubMed  Google Scholar 

  • Vassetzky, S.G., Spanish newt Pleurodeles waltlii Michah, in Ob”ekty biologii razvitiya (Objects of Developmental Biology), Moscow: Nauka, 1975, pp. 342–369.

    Google Scholar 

  • Wells, K.D., The Ecology and Behavior of Amphibians, Chicago-London: Univ. Chicago Press, 2007.

    Google Scholar 

  • Wilder, H.H., The early development of Desmognathus fusca, Am. Nat., 1904, vol. 38, pp. 117–125.

    Google Scholar 

  • Wühr, M., Tan, E.S., Parker, S.K., et al., A model for cleavage plane determination in early amphibian and fish embryos, Curr. Biol., 2010, vol. 20, pp. 2040–2045.

    PubMed Central  PubMed  Google Scholar 

  • Wunderer, H., Die Entwicklung der Äußern Körperform des Alpensalamanders (Salamandra atra Laur), Zool. Jahrb. Abt. Anat. Ontog. Tiere, 1910, vol. 29, pp. 367–414.

    Google Scholar 

  • Yamazaki-Yamamoto, K., Takata, K., and Kato, Y., Changes of chromosome length and constitutive heterochromatin in association with cell division during early development of Cynops pyrrhogaster embryo, Devel. Growth Differ., 1984, vol. 26, pp. 295–302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Desnitskiy.

Additional information

Published in Russian in Ontogenez, 2014, Vol. 45, No. 1, pp. 3–13.

The article was translated by the author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desnitskiy, A.G. On the classification of the cleavage patterns in amphibian embryos. Russ J Dev Biol 45, 1–10 (2014). https://doi.org/10.1134/S1062360414010020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360414010020

Keywords

Navigation