Skip to main content
Log in

Endogenous biorhythms of the mass specific rate of oxygen consumption in individual development of Lymnaea stagnalis (Lymnaeidae, Gastropoda)

  • Developmental Biology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Two endogenous biorhythms of the mass specific rate of oxygen consumption with periods of 10.3 and 7.2 weeks have been revealed in the late postlarval ontogenesis of freshwater gastropods Lymnaea stagnalis by singular spectrum analysis. It has been determined that local maxima of both biorhythms in different individuals occur at the same age; in addition to that, the periods of biorhythms are approximately the same in all studied animals and remain unchanged during the whole individual development. It has been noted that the biorhythm with a period of 10.3 weeks is damped (its amplitude decreases from 8 μL O2/(h g) at the age of 20 weeks to 3 μL O2/(h g) at the time of death), and the biorhythm with the period of 7.2 weeks is sustained (its average amplitude is 2.4 ± 0.4 μL O2/(h g).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennett, A.F. and Dawson, W.R., Metabolism, in Biology of Reptilia, New York: Acad. Press, 1976, vol. 5, pp. 121–223.

    Google Scholar 

  • Berkovich, E.M., Energeticheskii obmen v norme i patologii (Energy Metabolism in Health and Disease), Moscow: Meditsina, 1964.

    Google Scholar 

  • Brown, F., Biological rhythms, in Comparative Physiology of Animals: An Environmental Approach, New York: Harper and Row, 1976.

    Google Scholar 

  • Brett, J.R., The metabolic demand for oxygen in fish, particularly salmonids, and a comparison with other vertebrates, Respirat. Physiol., 1972, vol. 14, nos. 1/2, pp. 151–170.

    Article  CAS  Google Scholar 

  • Brodskii, V.Ya. and Nechaeva, N.V., Ritmy sinteza belka (Protein Synthesis Rhythms), Moscow: Nauka, 1988.

    Google Scholar 

  • Brown, F.A., Bennett, M.F., and Webb, H.M., Persistent daily and tidal rhythms of O2-consumption in fiddle crabs, J. Cell. Comp. Physiol., 1954, vol. 44, no. 3, pp. 477–505.

    Article  CAS  Google Scholar 

  • Chiba, Y., Cutkomp, L.K., and Halberg, F., Circadian oxygen consumption rhythm of the flour beetle, Tribolium confusum, J. Insect Physiol., 1973, vol. 19, no. 11, pp. 2163–2172.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, W.R. and Hudson, J.W., Birds, in Comparative Physiology of Thermoregulation, New York: Acad. Press, 1970, vol. 1, pp. 224–310.

    Google Scholar 

  • Dmi’el, R., Circadian rhythm of oxygen consumption in snake embryos, Life Sci., 1969, vol. 8, no. 24, pp. 1333–1341.

    Article  PubMed  Google Scholar 

  • Edwards, S.W. and Lloyd, D., Oscillations of respiration and adenine nucleotides in synchronous cultures of Acanthamoeba castellanii: mitochondrial respiratory control in vivo, J. Gen. Microbiol., 1978, vol. 108, pp. 197–204.

    Article  CAS  Google Scholar 

  • Glavnye komponenty vremennykh ryadov: metod “Gusenitsa” (The Main Components of Time Series: The “Caterpillar” Method), Danilov, D.P. and Zhiglyavskii, A.A., Eds., St. Petersburg: Izd. S.-Peterb. Gos. Univ., 1997.

    Google Scholar 

  • Goodwin, B. C., Temporal Organization in Cells; a Dynamic Theory of Cellular Control Process, London: Academic Press, 1963.

    Google Scholar 

  • Horne, Y.A. and Whitehead, M., Ultradian and other rhythms in human respiration rate, Experientia, 1976, vol. 32, no. 9, pp. 1165–1167.

    Article  PubMed  CAS  Google Scholar 

  • Kayser, C. and Hildwein, G., Evolution de la consommation d’oxygen et de l’activité du cobaye au cours du nycthémerè, Arch. Sci. Physiol., 1974, vol. 28, no. 1, pp. 1–23.

    Google Scholar 

  • Kim, W.S., Huh, H.T., Je, J.-G., and Han, K.-N., Evidence of two-clock control of endogenous rhythm in the Washington clam, Saxidomus purpuratus, Mar. Biol., 2003, vol. 142, pp. 305–309.

    Google Scholar 

  • Kinnear, A. and Shield, J.W., Metabolism and temperature regulation in marsupials, Comp. Biochem. Physiol., 1975, vol. A52, no. 1, pp. 235–245.

    Article  Google Scholar 

  • Kleimenov, S.Yu., Energy metabolism of growing larvae of the cricket Acheta domestica L. evaluated by direct and indirect calorimetry, Dokl. Biol. Sci., 1997, vol. 353, no. 5, pp. 133–135.

    Google Scholar 

  • Kleimenov, S.Yu. and Zotin, A.A., The rhythms of growth and energy metabolism in the post-larval ontogeny of Lymnaea stagnalis (Gastropoda, Lymnaeidae), in Mater. Nauch. Konf., Posvyashchennoi 70-letiyu Belomor. Biol. Stantsii MGU (Proc. Sci. Conf. Dedicated to the 70th Anniversary of the White Sea Biological Station, Moscow State University), Moscow: Grif i K, 2008, pp. 164–165.

    Google Scholar 

  • Kryanev, A.V. and Lukin, G.V., Metricheskii analiz i obrabotka dannykh (Metric Analysis and Data Processing), Moscow: Fizmatlit, 2010.

    Google Scholar 

  • Lamprecht, I., Dissipative structures in physics, chemistry, and biology, in Termodinamika biologicheskikh protsessov (Thermodynamics of Biological Processes), Moscow: Nauka, 1976, pp. 175–186.

    Google Scholar 

  • Lyashenko, A.V. and Kharchenko, T.A., Godovaya dinamika energeticheskogo obmena u dreisseny, Gidrobiol. Zh., 1989, vol. 25, no. 3, pp. 31–38.

    Google Scholar 

  • Malek-Mansour, M., Nicolis, G., and Prigogine, I., Nonequilibrium phase transitions in chemical systems, in Termodinamika i kinetika biologicheskikh protsessov (Thermodynamics and Kinetics of Biological Processes), Moscow: Nauka, 1980, pp. 59–83.

    Google Scholar 

  • McCormick, S.A., Oxygen consumption and torpor in the fat-tailed dwarf lemur (Cheirogallus medius): rethinking prosimian metabolism, Comp. Biochem. Physiol., 1981, vol. A68, no. 4, pp. 605–610.

    Article  Google Scholar 

  • Mina, M.V. and Klevezal’, G.A., Rost zhivotnykh (Growth of Animals), Moscow: Nauka, 1976.

    Google Scholar 

  • Nicolis, G., Fluctuations around non-equilibrium states in open non-linear systems, J. Stat. Phys., 1972, vol. 6, nos. 2/3, pp. 195–222.

    Article  Google Scholar 

  • Palmer, J.D., Biological Clocks in Marine Organisms, New York: Wiley, 1974.

    Google Scholar 

  • Panteleev, P.A., Bioenergetika melkikh mlekopitayushchikh (Bioenergetics of Small Mammals), Moscow: Nauka, 1983.

    Google Scholar 

  • Plokhinskii, N.A., Biometriya (Biometry), Novosibirsk: Izd. SO AN SSSR, 1961.

    Google Scholar 

  • Prigogine, I. and Nicolis, G., On symmetry-breaking instabilities in dissipative systems, J. Chem. Phys., 1967, vol. 46, no. 9, pp. 3542–3549.

    Article  CAS  Google Scholar 

  • Prigogine, I., La thermodynamique de la vie, La Recherche, 1972, vol. 3, no. 24, pp. 547–562.

    CAS  Google Scholar 

  • Prigogine, I., Vvedenie v termodinamiku neobratimykh protsessov (Introduction to the Thermodynamics of Irreversible Processes), Moscow: Izd. Inostr. Liter., 1960.

    Google Scholar 

  • Rand Corporation. A Million Random Digits with 100000 Normal Deviates, Santa Monica: Rand Corporation, 2001.

  • Shakhparonov, M.I. and Pavlenko, A.A., Non-equilibrium thermodynamics and the theory of periodic processes in macrosystems. II. Chemical oscillations near the thermodynamic equilibrium, Zh. Fiz. Khim., 1988, vol. 62, no. 8, pp. 2275–2278.

    CAS  Google Scholar 

  • Stroganov, N.S., Ekologicheskaya fiziologiya ryb (Environmental Physiology of Fishes), Moscow: Izd. Mosk. Gos. Univ., 1962.

    Google Scholar 

  • Stupfel, M., Davergne, M., Peramon, A., et al., Rythmes ultradiens respiratoires de quatre petits vertébrés, C.R. Acad. Sci. D, 1979, vol. 289, no. 9, pp. 675–678.

    CAS  Google Scholar 

  • Vasil’ev, V.A., Stationary dissipative structures, in Termodinamika biologicheskikh protsessov (Thermodynamics of Biological Processes), Moscow: Nauka, 1976a, pp. 186–198.

    Google Scholar 

  • Vasil’ev, V.A., Dynamic dissipative structures, in Termodinamika biologicheskikh protsessov (Thermodynamics of Biological Processes), Moscow: Nauka, 1976b, pp. 198–203.

    Google Scholar 

  • Vasil’ev, V.A., Romanovskii, Yu.M., and Chernavskii, D.S., Elements of the theory of dissipative structures: the relationship with the problems of structure formation, in Matematicheskaya biologiya razvitiya (Mathematical Developmental Biology), Moscow: Nauka, 1982, pp. 82–101.

    Google Scholar 

  • Way, C.M. and Wissing, T., Seasonal variability in the respiration of the freshwater clams. Pisidium variabilc (Prime) and P. compressum (Prime) (Bivalvia: Pisidiidae), Comp. Biochem. Physiol., 1984, vol. 78A, pp. 453–457.

    Article  Google Scholar 

  • Zeuthen, E., Cyclic in oxygen consumption in cleaving eggs, Exp. Cell Res., 1960, vol. 19, no. 1, pp. 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Zotin, A.I., Changes in the rate of entropy production during embryonic development and growth, Biofizika, 1966, vol. 11, no. 3, pp. 554–557.

    PubMed  CAS  Google Scholar 

  • Zotin, A.I., Dissipative structures and ψu-functions, in Termodinamika biologicheskikh protsessov (Thermodynamics of Biological Processes), Moscow: Nauka, 1976, pp. 203–205.

    Google Scholar 

  • Zotin, A.I., Termodinamicheskaya osnova reaktsii organizmov na vneshnie i vnutrennie faktory (The Thermodynamic Basis of Biological Response to External and Internal Factors), Moscow: Nauka, 1988.

    Google Scholar 

  • Zotin, A.A., Equations describing changes in weight and mass-specific rate of oxygen consumption in animals during postembryonic development, Biol. Bull. (Moscow), 2006, vol. 33, no. 4, pp. 323–331.

    Article  CAS  Google Scholar 

  • Zotin, A.A., Patterns of growth and energy metabolism in the ontogeny of mollusks, Extended Abstract of Doctoral (Biol.) Dissertation, Moscow: Inst. Biol. Razv. Ross. Akad. Nauk, 2009a.

    Google Scholar 

  • Zotin, A.A., The growth and energy metabolism of Lymnaea stagnalis (Lymnaeidae, Gastropoda): I. Early postlarval period, Biol. Bull. (Moscow), 2009b, vol. 36, no. 5, pp. 455–463.

    Article  CAS  Google Scholar 

  • Zotin, A.A., Energetic metabolism during individual development of Lymnaea stagnalis (Lymnaeidae, Gastropoda): III. Late postlarval ontogeny, Biol. Bull. (Moscow), 2010, vol. 37, no. 6, pp. 596–604.

    Article  CAS  Google Scholar 

  • Zotin, A.A. and Kleimenov, S.Yu., Endogenous biorhythms of the specific growth rate in individual development of Lymnaea stagnalis (Lymnaeidae, Gastropoda), Biol. Bull. (Moscow), 2013, vol. 40, no. 1, pp. 1–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zotin.

Additional information

Original Russian Text © A.A. Zotin, S.Yu. Kleymenov, 2013, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2013, No. 6, pp. 653–660.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zotin, A.A., Kleymenov, S.Y. Endogenous biorhythms of the mass specific rate of oxygen consumption in individual development of Lymnaea stagnalis (Lymnaeidae, Gastropoda). Biol Bull Russ Acad Sci 40, 500–507 (2013). https://doi.org/10.1134/S1062359013060174

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359013060174

Keywords

Navigation