Skip to main content
Log in

The Effect of Pseudorandom Sequence Systematicity on Signal-to-Noise Ratio in Hadamard Transform Ion Mobility Spectrometry

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The formation of an artefact signal can greatly influence the sensitivity of the drift tube ion mobility spectrometer (IMS) in multiplex mode (Hadamard transform mode). This signal is a systematic error of multiplexed signal modulation via pseudorandom sequence (PRS), and it can appear as false peaks, or it can be similar to interference or noise. The artefact signal usually cannot be differentiated from the latter by standard mathematical processing algorithms. In Hadamard transform ion mobility spectrometry, the presence of an artefact signal when utilizing standard data processing algorithms results in the following situation. Even though each individual recovered spectrum demonstrates a noticeable improvement in signal-to-noise ratio due to forward Hadamard transform, this improvement is reduced or even disappears completely for averaged recovered multiplexed spectra when compared to the conventional IMS averaging mode. A noticeable improvement in signal-to-noise ratio can be achieved by modifying PRSs by incorporating fixed numbers of additional zeros after every element (modulation bin) of the conventional PRSs. The improvement can be explained because the addition suppresses systematic noise-like artefact signals. In this paper, we analyze the observed signal-to-noise ratio in averaged spectra for simulated via theoretical model and experimental data for various multiplexing modes of Hadamard transform. We also analyzed the influence of modulating PRSs’ “randomness” on signal-to-noise ratio in the resulting spectra in the case of non-modified sequences. We chose the standard deviation of PRS’s autocorrelation function, or the autocorrelation coefficient, to serve as the “randomness” criterion. For modulation with PRSs modified with additional zeros, we observed a considerable correlation between theoretical and experimental values of relative improvement of the signal-to-noise ratio. This indirectly proves the existence of constraints in Hadamard multiplexing mode when a statistically significant amount of individual spectra is averaged. This also leads to the necessity of improved strategies of data multiplexing and decoding for further sensitivity improvement. The choice of optimal PRS is part of the strategy’s search. One of the choice’s criterion is the minimization of the artefact signal. The data presented in this paper suggests that the autocorrelation coefficient as the criterion of choice for PRS is justified but not sufficient: it leaves the problem of PRS selection when searching for a strategy for sensitivity improvement in Hadamard transform ion mobility spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Cumeras, R., Figueras, E., Davis, C.E., et al., Analyst, 2015, vol. 140, no. 5, p. 1376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. May, J.C. and McLean, J.A., Anal. Chem., 2015, vol. 87, no. 3, p. 1422.

    Article  CAS  PubMed  Google Scholar 

  3. Hädener, M., Kamrath, M.Z., Weinmann, W., et al., Anal. Chem., 2018, vol. 90, no. 15, p. 8764.

    Article  PubMed  Google Scholar 

  4. Harris, G.A., Graf, S., Knochenmuss, R., et al., Analyst, 2012, vol. 137, no. 13, p. 3039.

    Article  CAS  PubMed  Google Scholar 

  5. Wise, M.B. and Guerin, M.R., Anal. Chem., 1997, vol. 69, no. 1, p. 26.

    Article  Google Scholar 

  6. White, A.J., Blamire, M.G., CorLett., C.A., et al., Rev. Sci. Instrum., 1998, vol. 69, no. 2, p. 565.

    Article  CAS  Google Scholar 

  7. Ketola, R.A., Kiuru, J.T., Tarkiainen, V., et al., Rapid Commun. Mass Spectrom., 2003, vol. 17, no. 7, p. 753.

    Article  CAS  PubMed  Google Scholar 

  8. Sabo, M., Malásková, M., and Matejcik, Analyst, 2014, vol. 139, no. 20, p. 5112.

    Article  CAS  PubMed  Google Scholar 

  9. Shaltaeva, Y.R., Podlepetsky, B.I., and Pershenkov, V.S., Eur. J. Mass Spectrom., 2017, vol. 23, no. 4, p. 217.

    Article  CAS  Google Scholar 

  10. Chistyakov, A.A., Kotkovskii, G.E., Sychev, A.V., et al., Laser Phys. Lett., 2014, vol. 11, no. 6, 065605.

    Article  CAS  Google Scholar 

  11. Fernández-Maestre, R. and Hill, H.H., Int. J. Ion Mobility Spectrom., 2009, vol. 12, no. 3, p. 91.

    Article  Google Scholar 

  12. Tadjimukhamedov, F.K., Jackson, A.U., Nazarov, E.G., et al., J. Am. Soc. Mass Spectrom., 2010, vol. 21, no. 9, p. 1477.

    Article  CAS  PubMed  Google Scholar 

  13. Tang, X., Bruce, J.E., and Hill, H.H., Rapid Commun. Mass Spectrom., 2007, vol. 21, no. 7, p. 1115.

    Article  CAS  PubMed  Google Scholar 

  14. Adamov, A., Viidanoja, J., Kärpänoja, E., et al., Rev. Sci. Instrum., 2007, vol. 78, no. 4, 044101.

    Article  PubMed  Google Scholar 

  15. Crawford, C.L., Graf, S., Gonin, M., et al., Int. J. Ion Mobility Spectrom., 2011, vol. 14, no. 1, p. 23.

    Article  Google Scholar 

  16. Hill, H.H., Jr., Siems, W.F., Louis, R.H.S., et al., Anal. Chem., 1990, vol. 62, no. 23, p. 1201.

    Article  Google Scholar 

  17. Louis, R.H., Siems, W.F., and Hill, H.H., Anal. Chem., 1992, vol. 64, no. 2, p. 171.

    Article  Google Scholar 

  18. Knorr, F.J., Eatherton, R.L., Siems, W.F., et al., Anal. Chem., 1985, vol. 57, no. 2, p. 402.

    Article  CAS  PubMed  Google Scholar 

  19. Davis, A.L. and Clowers, B.H., Int. J. Mass Spectrom. Ion Processes, 2018, vol. 427, p. 141.

    Article  CAS  Google Scholar 

  20. Poltash, M.L., McCabe, J.W., Shirzadeh, M., et al., Anal. Chem., 2018, vol. 90, no. 17, p. 10472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Davis, A.L., Liu, W., Siems, W.F., et al., Analyst, 2017, vol. 142, no. 2, p. 292.

    Article  CAS  PubMed  Google Scholar 

  22. Morrison, K.A., Siems, W.F., and Clowers, B.H., Anal. Chem., 2016, vol. 88, no. 6, p. 3121.

    Article  CAS  PubMed  Google Scholar 

  23. Clowers, B.H., Siems, W.F., Yu, Z., et al., Analyst, 2015, vol. 140, no. 20, p. 6862.

    Article  CAS  PubMed  Google Scholar 

  24. Zare, R.N., Fernandez, F.M., and Kimmel, J.R., Angew. Chem., Int. Ed., 2003, vol. 42, no. 1, p. 30.

    Article  CAS  Google Scholar 

  25. Brock, A., Rodriguez, N., and Zare, R.N., Anal. Chem., 1998, vol. 70, no. 18, p. 3735.

    Article  CAS  Google Scholar 

  26. Clowers, B.H., Siems, W.F., Hill, H.H., et al., Anal. Chem., 2006, vol. 78, no. 1, p. 44.

    Article  CAS  PubMed  Google Scholar 

  27. Szumlas, A.W., Ray, S.J., and Hieftje, G.M., Anal. Chem., 2006, vol. 78, no. 13, p. 4474.

    Article  CAS  PubMed  Google Scholar 

  28. Belov, M.E., Clowers, B.H., Prior, D.C., et al., Anal. Chem., 2008, vol. 80, no. 15, p. 5873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Clowers, B.H., Belov, M.E., Prior, D.C., et al., Anal. Chem., 2008, vol. 80, no. 7, p. 2464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Belov, M.E., Buschbach, M.A., Prior, D.C., et al., Anal. Chem., 2007, vol. 79, no. 6, p. 2451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tummalacherla, M., Garimella, S.V.B., Prost, S.A., et al., Analyst, 2017, vol. 142, no. 10, p. 1735.

    Article  CAS  PubMed  Google Scholar 

  32. Harris, G.A., Kwasnik, M., and Fernandez, F.M., Anal. Chem., 2011, vol. 83, no. 6, p. 1908.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, X., Knochenmuss, R., Siems, W.F., et al., Anal. Chem., 2014, vol. 86, no. 3, p. 1661.

    Article  CAS  PubMed  Google Scholar 

  34. Prost, S.A., Crowell, K.L., Baker, E.S., et al., J. Am. Soc. Mass Spectrom., 2014, vol. 25, no. 12, p. 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hong, Y., Niu, W., Gao, H., et al., RSC Adv., 2015, vol. 5, no. 69, p. 56103.

    Article  CAS  Google Scholar 

  36. Ibrahim, Y.M., Garimella, S.V.B., Prost, S.A., et al., Anal. Chem., 2016, vol. 88, no. 24, p. 12152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, W., Davis, A.L., Siems, W.F., et al., Anal. Chem., 2017, vol. 89, no. 5, p. 2800.

    Article  CAS  PubMed  Google Scholar 

  38. Hong, Y., Huang, C., Liu, S., et al., Anal. Chim. Acta, 2018, vol. 1029, p. 44.

    Article  CAS  PubMed  Google Scholar 

  39. Hong, Y., Liu, S., Huang, C., et al., J. Am. Soc. Mass Spectrom., 2017, vol. 28, no. 11, p. 2500.

    Article  CAS  PubMed  Google Scholar 

  40. Sarycheva, A., Adamov, A., Poteshin, S.S., et al., Eur. J. Mass Spectrom., 2020, vol. 26, no. 3, p. 204.

    Article  CAS  Google Scholar 

  41. Adamov, A., Mauriala, T., Teplov, V., et al., Int. J. Mass Spectrom. Ion Processes, 2010, vol. 298, nos. 1–3, p. 24.

    Article  CAS  Google Scholar 

  42. Pedersen, C.S., Lauritsen, F.R., Sysoev, A., et al., J. Am. Soc. Mass Spectrom., 2008, vol. 19, no. 9, p. 1361.

    Article  CAS  PubMed  Google Scholar 

  43. Viidanoja, J., Sysoev, A., Adamov, A., et al., Rapid Commun. Mass Spectrom., 2005, vol. 19, no. 21, p. 3051.

    Article  CAS  PubMed  Google Scholar 

  44. Sysoev, A.A., Chernyshev, D.M., Poteshin, S.S., et al., Anal. Chem., 2013, vol. 85, no. 19, p. 9003.

    Article  CAS  PubMed  Google Scholar 

  45. Sysoev, A.A., Anal. Chem., 2000, vol. 72, no. 17, p. 4221.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Competitiveness Enhancement Program of National Research Nuclear University “MEPhI.” (Moscow Engineering and Physics Institute) (Contract no. 02.a03.21.0005, 27.08.2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Sarycheva.

Ethics declarations

The authors declared no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarycheva, A.P., Adamov, A.Y., Lagunov, S.S. et al. The Effect of Pseudorandom Sequence Systematicity on Signal-to-Noise Ratio in Hadamard Transform Ion Mobility Spectrometry. J Anal Chem 76, 1485–1492 (2021). https://doi.org/10.1134/S106193482113013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106193482113013X

Keywords:

Navigation