Skip to main content
Log in

Enhanced Non-Enzymatic Glucose Detection Using a Flower-Like NiCo2O4 Spheres Modified Electrode

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The development of non-enzymatic glucose detection method is of great significance in the clinical, biological and food sample analysis. In this work, a NiCo2O4-Nafion modified glassy carbon electrode was successfully fabricated which can rapidly detect glucose (<5 s) with high selectivity. Flower-like nanorod-shaped NiCo2O4 spheres were simply synthesized via an one-pot hydrothermal reaction which were characterized by scanning electron microscope and X-ray diffraction. The as-prepared NiCo2O4 and Nafion modified glassy carbon electrode showed remarkable electrochemical activity for glucose detection in both cyclic voltammetry and chronoamperometry measurements. The anodic current was linearly proportional to glucose concentration in a broad range from 0.1 to 1360 μM. The detection limit of our NiCo2O4−Nafion modified electrode was determined as 10 nM (S/N = 3). Finally, the modified electrode exhibited high stability, selectivity and reproducibility. The electrode has been successfully applied to detect glucose in real food samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Newman, J.D. and Turner, A.P.F., Biosens. Bioelectron., 2005, vol. 20, p. 2435.

    Article  CAS  PubMed  Google Scholar 

  2. Yehezkeli, O., Tel-Vered, R., Raichlin, S., and Willner, I., ACS Nano, 2011, vol. 5, p. 2385.

    Article  CAS  PubMed  Google Scholar 

  3. Lu, N., Zhang, M., Ding, L., Zheng, J., Zeng, C., Wen, Y., and Zuo, X., Nanoscale, 2017, vol. 9, p. 4508.

    Article  CAS  PubMed  Google Scholar 

  4. Ghosh, J., Ghosh, R., and Giri, P.K., Sens. Actuators, B, 2018, vol. 254, p. 681.

    Article  CAS  Google Scholar 

  5. Li, J.J., An, H.Q., Zhu, J., and Zhao, J.W., Sens. Actuators, B, 2016, vol. 235, p. 663.

    Article  CAS  Google Scholar 

  6. JeCho, S., Noh, H.B., Won, M.S., Cho, C.H., Kim, K.B., and Shim, Y.B., Biosens. Bioelectron., 2018, vol. 99, p. 471.

    Article  CAS  Google Scholar 

  7. Chen, H., Li, L., Guo, H., Wang, X., and Qin, W., RSC Adv., 2015, vol. 5, p. 13805.

    Article  CAS  Google Scholar 

  8. Zhang, Q., Prabhu, A., San, A., Al-Sharab, J.F., and Levon, K., Biosens. Bioelectron., 2015, vol. 72, p. 100.

    Article  CAS  PubMed  Google Scholar 

  9. Wang, X., Ding, Z., Ren, Q., and Qin, W., Anal. Chem., 2013, vol. 85, p. 1945.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, Q., Kaisti, M., Prabhu, A., Yu, Y., Song, Y.-A., Rafailovich, M.H., Rahman, A., and Levon, K., Electrochim. Acta, 2018, vol. 261, p. 256.

    Article  CAS  Google Scholar 

  11. Holade, Y., Tingry, S., Servat, K., Napporn, T.W., Cornu, D., and Kokoh, K.B., Catalysts, 2017, vol. 7, p. 31.

    Article  CAS  Google Scholar 

  12. Chen, C., Xie, Q.J., Yang, D.W., Xiao, H.L., Fu, Y.C., Tan Y.M., and Yao, S.ZRSC Adv., 2013, vol. 3, p. 4473.

    Article  CAS  Google Scholar 

  13. Wilson, R. and Turner, A.P.F., Biosens. Bioelectron., 1992, vol. 7, p. 165.

    Article  CAS  Google Scholar 

  14. Daniel, M.Y., Javier, C.R., José, L.G., Francisco, J.G.A., and Agustín, C.G., Electrochim. Acta, 2017, vol. 229, p. 102.

    Article  CAS  Google Scholar 

  15. Zhang, Y., Xiao, X., Sun, Y., Shi, Y., Dai, H., Ni, P., Hu, J., Li, Z., Song, Y., and Wang, L., Electroanalysis, 2013, vol. 25, p. 959.

    Article  CAS  Google Scholar 

  16. Riman, D., Spyrou, K., Alexandros, E.K., Hrbac, J., and Prodromidis, M.I., Talanta, 2017, vol. 165, p. 466.

    Article  CAS  PubMed  Google Scholar 

  17. Liu, Q., Jiang, Z.M., Tang, Y.R., Yang, X., Wei, M., and Zhang, M.X., Sens. Actuators, B, 2018, vol. 255, p. 454.

    Article  CAS  Google Scholar 

  18. Ji, Y.Q., Liu, J., Liu, X.N., Yuen, M.M.F., Fu, X.Z., Yang, Y., Sun, R., and Wong, C.P., Electrochim. Acta, 2017, vol. 248, p. 299.

    Article  CAS  Google Scholar 

  19. Jung, D.U.J., Ahmad, R., and Hahn, Y.B., J. Colloid Interface Sci., 2018, vol. 512, p. 21.

    Article  CAS  PubMed  Google Scholar 

  20. Ci, S.Q., Huang, T.Z., Wen, Z.H., Cui, S.M., and Mao, S., Biosens. Bioelectron., 2014, vol. 54, p. 251.

    Article  CAS  PubMed  Google Scholar 

  21. Yu, J., Ni, Y.h., and Zhai, M.H., J. Alloys Compd., 2017, vol. 723, p. 904.

    Article  CAS  Google Scholar 

  22. Ibupoto, Z.H., Elhag, S., AlSalhi, M.S., Nur, O., and Willander, M., Electroanalysis, 2014, vol. 26, p. 1773.

    Article  CAS  Google Scholar 

  23. Sheng, L.Y., Li, Z.J., Meng, A.L., and Xu, Q.H., Sens. Actuators, B, 2018, vol. 254, p. 1206.

    Article  CAS  Google Scholar 

  24. Lien, C.H., Chen, J.C., Hu, C.C., and Wong, D.S.H., J. Taiwan Inst. Chem. Eng., 2014, vol. 45, p. 846.

    Article  CAS  Google Scholar 

  25. Zhao, C.J., Wu, X., Zhang, X.J., Li, P.W., and Qian, X.Z., J. Electroanal. Chem., 2017, vol. 785, p. 172.

    Article  CAS  Google Scholar 

  26. Kim, S., Lee, S.H., Cho, M., and Lee, Y., Biosens. Bioelectron., 2016, vol. 85, p. 587.

    Article  CAS  PubMed  Google Scholar 

  27. Tian, J., Liu, Q., Asiri, A.M., Qusti, A., Alyoubi, A., and Sun, X., Nanoscale, 2013, vol. 5, p. 8921.

    Article  CAS  PubMed  Google Scholar 

  28. Wang, S., Zhang, S.P., Liu, M., Song, H.O., Gao, J.J., and Qian, Y.Y., Sens. Actuators, B, 2018, vol. 254, p. 1101.

    Article  CAS  Google Scholar 

  29. Liao, S.H., Lu, S.Y., and Bao, S.J., Anal. Chim. Acta, 2016, vol. 905, p. 72.

    Article  CAS  PubMed  Google Scholar 

  30. Mondal, A.K., Su, D.W., Chen, S.Q., Kretschmer, K., Xie, X.Q., Ahn, H., and Wang, G.X., Chem. Phys. Chem., 2015, vol. 16, p. 169.

    Article  CAS  PubMed  Google Scholar 

  31. Xiao, J.W., Zeng, X.W., Chen, W., Xiao, F., and Wang, S., Chem. Commun., 2013, vol. 49, p. 11734.

    Article  CAS  Google Scholar 

  32. Bian, W.Y., Yang, Z.R., Strasser, P., and Yang, R.Z., J. Power Sources, 2014, vol. 250, p. 196.

    Article  CAS  Google Scholar 

  33. Zhang, Z.Y., Wang, X.G., Cui, G.L., Zhang, A.H., Zhou, X.H., Xu, H.X., and Gu, L., Nanoscale, 2014, vol. 6, p. 3540.

    Article  CAS  PubMed  Google Scholar 

  34. Prabu, M., Ramakrishnan, P., Nara, H., Momma, T., Osaka, T., and Shanmugam, S., ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 16545.

    Article  CAS  PubMed  Google Scholar 

  35. Qian, L., Chen, W., Huang, R.F., and Xiao, D., RSC Adv., 2015, vol. 5, p. 4092.

    Article  CAS  Google Scholar 

  36. Wang, Y., Cheng, K., Cao, D., Yang, F., Yan, P., Zhang, W., and Wang, G., Fuel Cells, 2015, vol. 15, p. 298.

    Article  CAS  Google Scholar 

  37. Liu, Y.Y., Zhang, Y.J., Wang, T., Qin, P.P., Guo, Q.F., and Pang, H., RSC Adv., 2014, vol. 4, p. 33514.

    Article  CAS  Google Scholar 

  38. Chen, H.C., Jiang, J.J., Zhang, L., Wan, H.Z., Qi, T., and Xia, D.D., Nanoscale, 2013, vol. 5, p. 8879.

    Article  CAS  PubMed  Google Scholar 

  39. Tao, F.F., Shan, J., Nguyen, L., Wang, Z., Zhang, S., Zhang, L., Wu, Z., Huang, W., Zeng, S., and Hu, P., Nat. Commun., 2015, vol. 6, p. 7798.

    Article  CAS  PubMed  Google Scholar 

  40. Liu, Z.Q., Xu, Q.Z., Wang, J.Y., Li, N., Guo, S.H., Su, Y.Z., Wang, H.J., Zhang, J.H., and Chen, S., Int. J. Hydrogen Energy, 2013, vol. 38, p. 6657.0

    Article  CAS  Google Scholar 

  41. Yu, X.X., Yu, J.G., Cheng, B., and Jaroniec, M., J. Phys. Chem. C, 2009, vol. 113, p. 17527.

    Article  CAS  Google Scholar 

  42. Wu, H.B., Pang, H., and Lou, X.W., Energy Environ. Sci., 2013, vol. 6, p. 3619.

    Article  CAS  Google Scholar 

  43. Xia, X.H., Tu, J.P., Zhang, Y.Q., Mai, Y.J., Wang, X.L., Gu, C.D., and Zhao, X.B., J. Phys. Chem. C, 2011, vol. 115, p. 22662.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Foundation of China (nos. 51508172, 51572076 and 51378183), Project for Discipline Groups Construction of Food New-type Industrialization and the Students’ Scientific Research Funds of Hubei University of Arts and Science, and Hainan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gaopeng Dai or Yuanyuan Liu.

Ethics declarations

It is confirmed that there is no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Liu, L., Wang, W. et al. Enhanced Non-Enzymatic Glucose Detection Using a Flower-Like NiCo2O4 Spheres Modified Electrode. J Anal Chem 76, 993–1001 (2021). https://doi.org/10.1134/S1061934821080098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934821080098

Keywords:

Navigation