Skip to main content
Log in

Cubic algebra and averaged Hamiltonian for the resonance 3: (−1) Penning-ioffe trap

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

For the 3: (−1) resonance Penning trap, we describe the algebra of symmetries which turns out to be a non-Lie algebra with cubic commutation relations. The irreducible representations and coherent states of this algebra are constructed explicitly. The perturbing inhomogeneous magnetic field of Ioffe type, after double quantum averaging, generates an effective Hamiltonian of the trap. In the irreducible representation, this Hamiltonian becomes a second-order ordinary differential operator of the Heun type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. S. Brown and G. Gabrielse, “Precision Spectroscopy of a Charged Particle in an Imperfect Penning Trap,” Phys. Rev. A 25(4), 2423–2425 (1982).

    Article  ADS  Google Scholar 

  2. G. Gabrielse, “Relaxation Calculation of the Electrostatic Properties of Compensated Penning Traps with Hyperbolic Electrodes,” Phys. Rev. A 27(5), 2277–2290 (1983).

    Article  ADS  Google Scholar 

  3. G. Gabrielse, “Detection, Damping, and Translating the Center of the Axial Oscillation of a Charged Particle in a Penning Trap with Hyperbolic Electrodes,” Phys. Rev. A 29(2), 462–469 (1984).

    Article  ADS  Google Scholar 

  4. M. Kretzschmar, “Single Particle Motion in a Penning Trap: Description in the Classical Canonical Formalism,” Phys. Scripta 46, 544–554 (1992).

    Article  ADS  Google Scholar 

  5. D. Segal and M. Shapiro, “Nanoscale Paul Trapping of a Single Electron,” Nano Letters 6(8), 1622–1626 (2006).

    Article  ADS  Google Scholar 

  6. G. Gabrielse and F. C. Mackintosh, “Cylindrical Penning Traps with Orthogonalized Anharmonicity Compensation,” Int. J. Mass Spectrometry and Ion Processes 57, 1–17 (1984).

    Article  Google Scholar 

  7. G. Gabrielse, L. Haarsma, and S. L. Rolston, “Open Endcap Penning Traps for High Precision Experiments,” Int. J. Mass Spectrometry and Ion Processes 88, 319–332 (1989).

    Article  Google Scholar 

  8. G. Gabrielse and H. Dehmelt, “Geonium without a Magnetic Bottle-A New Generation,” in Precision Measurement and Fundamental Constants. II, Ed. by B. N. Taylor and W. D. Phillips Natl. Bur. Stand. (U.S.), Spec. Publ. (617), 219–221 (1984).

  9. V. P. Maslov, Theory of Perturbations and Asymptotic Methods (Moscow State Univ., Moscow, 1965).

    Google Scholar 

  10. V. M. Babič [Babich] and V. S. Buldyrev, Short-Wavelength Diffraction Theory (Nauka, Moscow, 1972; Springer-Verlag, Berlin, 1991),.

    Google Scholar 

  11. M. V. Karasev and E. M. Novikova, “Algebra and Quantum Geometry of Multifrequency Resonance,” Izv. Ross. Akad. Nauk Ser. Mat. 74(6), 55–106 (2010) [Izvestiya: Math. 74 (6), 1155–1204 (2010)].

    MathSciNet  Google Scholar 

  12. M. V. Karasev, “Birkhoff Resonances and Quantum Ray Method,” in Proc. Intern. Seminar “Days of Diffraction” 2004 (St. Petersburg University and Steklov Math. Institute, St. Petersburg, 2004), pp. 114–126.

    Google Scholar 

  13. M. V. Karasev, “Noncommutative Algebras, Nano-Structures, and Quantum Dynamics Generated by Resonances, I,” in Quantum Algebras and Poisson Geometry in Mathematical Physics, Ed. by M. Karasev, Amer. Math. Soc. Transl. Ser. 2, Vol. 216 (Providence, 2005), pp. 1–18; arXiv: math.QA/0412542. M. V. Karasev, “Noncommutative Algebras, Nano-Structures, and Quantum Dynamics Generated by Resonances, II,” Adv. Stud. Contemp. Math. 11, 33–56 (2005). M. Karasev, “Noncommutative Algebras, Nano-Structures, and Quantum Dynamics Generated by Resonances, III,” ISSN 1061-9208, Russ. J. Math. Phys. 13 (2), 131–150 (2006).

    Google Scholar 

  14. D. J. Fernández and M. Velázquez,“Coherent States Approach to Penning Trap,” J. Phys. A: Math. Theor. 42, 085304 (2009).

    Article  ADS  Google Scholar 

  15. M. Genkin and E. Lindroth, “On the Penning Trap Coherent States,” J. Phys. A: Math. Theor. 42, 275305 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Karasev and E. Novikova, “Non-Lie Permutation Relations, Coherent States, and Quantum Embedding”, in: Coherent Transform, Quantization, and Poisson Geometry (M. Karasev, Ed.), Amer. Math. Soc. Transl. 187(2) (AMS, Providence, RI, 1998), pp. 1–202.

    Google Scholar 

  17. T. M. Squires, P. Yesley, and G. Gabrielse, “Stability of a Charged Particle in a Combined Penning-Ioffe Trap,” Phys. Rev. Lett. 86(23), 5266–5269 (2001).

    Article  ADS  Google Scholar 

  18. B. Hezel, I. Lesanovsky, and P. Schmelcher, “Ultracold Rydberg Atoms in a Ioffe-Pritchard Trap”, arXiv: 0705.1299v2.

  19. M. Karasev and V. P. Maslov, “Asymptotic and Geometric Quantization,” Uspekhi Mat. Nauk 39(6), 115–173 (1984) [Russian Math. Surveys 39 (6), 133–205 (1984)].

    MathSciNet  Google Scholar 

  20. H. Bateman and A. Erdélyi, Higher Transcendental Functions (McGraw-Hill, New York, 1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Karasev.

Additional information

This research was partially supported by RFBR, grant no. 12-01-00627a.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blagodyreva, O., Karasev, M. & Novikova, E. Cubic algebra and averaged Hamiltonian for the resonance 3: (−1) Penning-ioffe trap. Russ. J. Math. Phys. 19, 440–448 (2012). https://doi.org/10.1134/S1061920812040048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920812040048

Keywords

Navigation