Skip to main content
Log in

Dimensional crossover in two-dimensional Bose-Fermi mixtures

  • Physics of Cold Trapped Atoms
  • Published:
Laser Physics

Abstract

We investigate the equilibrium properties of boson-fermion mixtures consisting of a Bose condensate and spin-polarized Fermi gas confined in a harmonic two-dimensional (2D) trap using mean-field theory. Boson-boson and boson-fermion coupling constants have a logarithmic dependence on the density because of the two-dimensional scattering events when the s-wave scattering lengths are on the order of mixture thickness. We show that this modifies the density profiles significantly. It is also shown that the dimensional crossover stabilizes the mixture against collapse and spatial demixing is observed for the case of a negative boson-fermion scattering length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Truscott, K. E. Strecker, W. I. McAlexander, G. B. Partridge, and R. G. Hulet, Science 291, 2570 (2001).

    Article  ADS  Google Scholar 

  2. F. Schreck, L. Khaykovich, K. L. Corwin, G. Ferrari, T. Bourdel, J. Cubizolles, and C. Salomon, Phys. Rev. Lett. 87, 080403 (2001).

    Article  ADS  Google Scholar 

  3. Z. Hadzibabic, C. A. Stan, K. Dieckmann, S. Gupta, M. W. Zwieilein, A. Görlitz, and W. Ketterle, Phys. Rev. Lett. 88, 160401 (2002).

    Article  ADS  Google Scholar 

  4. J. Goldwin, S. B. Papp, B. DeMarco, and D. S. Jin, Phys. Rev. A 65, 021402(E) (2002).

    Article  ADS  Google Scholar 

  5. G. Roati, F. Riboli, G. Modugno, and M. Inguscio, Phys. Rev. Lett. 89, 150403 (2002).

    Article  ADS  Google Scholar 

  6. G. Modugno, G. Roati, F. Riboli, F. Ferlaino, R. J. Brecha, and M. Inguscio, Science 297, 2240 (2002).

    Article  ADS  Google Scholar 

  7. T. Fukuhara, S. Sugawa, Y. Takasu, and Y. Takahashi, Phys. Rev. A 79, 021601(R) (2009).

    ADS  Google Scholar 

  8. G. B. Partridge, W. Li, R. I. Kamar, Y. Liao, and R. G. Hulet, Science 311, 503 (2006).

    Article  ADS  Google Scholar 

  9. Y. Shin, M. W. Zwierlein, C. H. Schunck, A. Schirotzek, and W. Ketterle, Phys. Rev. Lett. 97, 030401 (2006).

    Article  ADS  Google Scholar 

  10. S. Ospelkaus, C. Ospelkaus, L. Humbert, K. Sengstock, and K. Bongs, Phys. Rev. Lett. 97, 120403 (2006).

    Article  ADS  Google Scholar 

  11. M. Zaccanti, C. D’Errico, F. Ferlaino, G. Roati, M. Inguscio, and G. Modugno, Phys. Rev. A 74, 041605(R) (2006).

    Article  ADS  Google Scholar 

  12. R. Roth, Phys. Rev. A 66, 013614 (2002).

    Article  ADS  Google Scholar 

  13. S. Röthel and A. Pelster, Eur. Phys. J. B 59, 343 (2007).

    Article  ADS  Google Scholar 

  14. K. Mølmer, Phys. Rev. Lett. 80, 1804 (1998).

    Article  ADS  Google Scholar 

  15. Z. Akdeniz, P. Vignolo, A. Minguzzi, and M. P. Tosi, J. Phys. B 35, L105 (2002).

    Article  ADS  Google Scholar 

  16. Z. Akdeniz, P. Vignolo, and M. P. Tosi, Phys. Lett. A 331, 258 (2004).

    Article  ADS  Google Scholar 

  17. D.-W. Wang, M. D. Lukin, and E. Demler, Phys. Rev. A 72, 051604(R) (2005).

    ADS  Google Scholar 

  18. L. Mathey and D.-W. Wang, Phys. Rev. A 75, 013612 (2007).

    Article  ADS  Google Scholar 

  19. M. Schick, Phys. Rev. A 3, 1067 (1971).

    Article  ADS  Google Scholar 

  20. V. N. Popov, Functional Integrals in Quantum Field Theory and Statistical Physics (Reidel, Dordrecht 1983), Chap. 6.

    MATH  Google Scholar 

  21. U. Al Khawaja, J. O. Andersen, N. P. Proukakis, and H. T. C. Stoof, Phys. Rev. A 66, 013615 (2002).

    Article  ADS  Google Scholar 

  22. M. D. Lee, S. A. Morgan, M. J. Davis, and K. Burnett, Phys. Rev. A 65, 043617 (2002).

    Article  ADS  Google Scholar 

  23. B. Tanatar, A. Minguzzi, P. Vignolo, and M. P. Tosi, Phys. Lett. A 302, 131 (2002).

    Article  ADS  Google Scholar 

  24. O. Hosten, P. Vignolo, A. Minguzzi, B. Tanatar, and M. P. Tosi, J. Phys. B: At. Mol. Opt. Phys. 36, 2455 (2003).

    Article  ADS  Google Scholar 

  25. A. Görlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L. Gustavson, J. R. Abo-Shaeer, A. P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, and W. Ketterle, Phys. Rev. Lett. 87, 130402 (2001).

    Article  Google Scholar 

  26. V. Schweikhard, I. Coddington, P. Engels, V. P. Mogendorff, and E. A. Cornell, Phys. Rev. Lett. 92, 040404 (2004).

    Article  ADS  Google Scholar 

  27. D. Rychtarik, B. Engeser, H.-C. Nägerl, and R. Grimm, Phys. Rev. Lett. 92, 173003 (2004).

    Article  ADS  Google Scholar 

  28. Y. Colombe, E. Knyazchyan, O. Morizot, B. Mercier, V. Lorent, and H. Perrin, Europhys. Lett. 67, 593 (2004).

    Article  ADS  Google Scholar 

  29. S. Stock, Z. Hadzibabic, B. Battelier, M. Cheneau, and J. Dalibard, Phys. Rev. Lett. 95, 190403 (2005).

    Article  ADS  Google Scholar 

  30. A. L. Subaşi, S, Sevinçli, P. Vignolo, and B. Tanatar, Phys. Rev. A 79, 063632 (2009).

    Article  ADS  Google Scholar 

  31. B. van Zyl and E. Zaremba, Phys. Rev. B 59, 2079 (1999).

    Article  ADS  Google Scholar 

  32. D. Jezek, M. Barraco, M. Guilleumas, R. Mayol, and M. Pi, Phys. Rev. A 70, 043630 (2004).

    Article  ADS  Google Scholar 

  33. M. E. Tasgin, A. L. Subasi, M. O. Oktel, and B. Tanatar, J. Low Temp. Phys. 138, 611 (2005).

    Article  ADS  Google Scholar 

  34. C. Gies, B. van Zyl, S. Morgan, and D. Hutchinson, Phys. Rev. A 69, 023616 (2004).

    Article  ADS  Google Scholar 

  35. B. P. van Zyl, R. K. Bhaduri, and J. Sigetich, J. Phys. B 35, 1251 (2002).

    ADS  Google Scholar 

  36. M. Holzmann and W. Krauth, Phys. Rev. Lett. 100, 190402 (2008).

    Article  ADS  Google Scholar 

  37. Z. Akdeniz, P. Vignolo, P. Capuzzi, and M. P. Tosi, Laser Phys. 16, 1005 (2006).

    Article  ADS  Google Scholar 

  38. D. S. Petrov, M. Holzmann, and G. Shlyapnikov, Phys. Rev. Lett. 84, 2551 (2000).

    Article  ADS  Google Scholar 

  39. M. D. Lee and S. A. Morgan, J. Phys. B 35, 3009 (2002).

    Article  ADS  Google Scholar 

  40. J. Mur-Petit, A. Polls, M. Baldo, and H.-J. Schulze, Phys. Rev. A 69, 023606 (2004); J. Phys. B 37, S165 (2004).

    Article  ADS  Google Scholar 

  41. D. S. Petrov and G. V. Shlyapnikov, Phys. Rev. A 64, 012706 (2001).

    Article  ADS  Google Scholar 

  42. C. Gies, M. D. Lee, and D. A. W. Hutchinson, J. Phys. B 38, 1797 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Tanatar.

Additional information

Original Russian Text © Astro, Ltd., 2010.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subaşi, A.L., Sevinçli, S., Vignolo, P. et al. Dimensional crossover in two-dimensional Bose-Fermi mixtures. Laser Phys. 20, 683–693 (2010). https://doi.org/10.1134/S1054660X1005018X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X1005018X

Keywords

Navigation