Skip to main content
Log in

Detection of hepatocarcinoma in rats by integration of the fluorescence spectrum: Experimental model

  • Laser Methods in Biology and Medicine
  • Published:
Laser Physics

Abstract

The incorporation of spectroscopic techniques into diagnostic procedures may greatly improve the chances for precise diagnostics. One promising technique is fluorescence spectroscopy, which has recently been used to detect many different types of diseases. In this work, we use laser-induced tissue fluorescence to detect hepatocarcinoma in rats using excitation light at wavelengths of 443 and 532 nm. Hepatocarcinoma was induced chemically in Wistar rats. The collected fluorescence spectrum ranges from the excitation wavelength up to 850 nm. A mathematical procedure carried out on the spectrum determines a figure of merit value, which allows the detection of hepatocarcinoma. The figure of merit involves a procedure which evaluates the ratio between the backscattered excitation wavelength and the broad emission fluorescence band. We demonstrate that a normalization allowed by integration of the fluorescence spectra is a simple operation that may allow the detection of hepatocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. X. Bosch, J. Ribes, and J. Barros, “Epidemiology of Primary Liver Cancer,” Semin Liver Dis. 19, 271 (1999).

    Article  Google Scholar 

  2. V. C. Nzeaks, Z. D. Goodman, K. G. Ishok, “Hepatocellulas Carcinoma in Cirrhotic and Noncirrhotic Livers: A Clinic-Histopathologic Study of 804 North American Patients,” Am. J. Clin. Pathol. 105, 65 (1996).

    Google Scholar 

  3. F. V. Cookley and L. H. Schwortz, “Imaging of Hepatocellular Carcinoma: A Practical Approach,” Semin. Oncol. 28(5), 460 (2001).

    Article  Google Scholar 

  4. A. Policard, “Etude sur les aspects offerts par des tumeur experimentales examinees a la lumiere de Wood,” Compendeus Soc. Biol. 91, 1423 (1924).

    Google Scholar 

  5. F. Ronchese, B. S. Walker, and R. M. Young, “The Reddish-Orange Fluorescence of Necrotic Cancerous Surfaces under the Wood Light,” Arch. Dermatol. Syphilis 69, 31 (1954).

    Google Scholar 

  6. R. R. Alfano, D. B. Tata, J. Cordero, et al., “Laser Induced Fluorescence Spectroscopy from Native Cancerous and Normal Tissue,” IEEE J. Quantum Electron. 20, 1507 (1984).

    Article  ADS  Google Scholar 

  7. A. Gillenwater, R. Jacob, R. R. Kortum, “Fluorescence Spectroscopy: A Technique with Potential to Improve the Early Detection of Aerodigestive Tract Neoplasia,” Head Neck 20, 556 (1998).

    Article  Google Scholar 

  8. M. Broglia., “Blue-Green Laser Induced Fluorescence from Intact Leaves,” Appl. Opt. 32, 334 (1993).

    Article  ADS  Google Scholar 

  9. J. K. Dhingra et al., “Early Diagnosis of Upper Aerodigestive Tract Cancer by Autofluorescence,” Arch. Otolaryngol. Head Neck Surg. 122, 1182 (1996).

    Google Scholar 

  10. G. A. Wagniéres, W. M. Star, and B. C. Wilson, “In vivo Fluorescence Spectroscopy and Imaging for Oncological Applications,” Photochem. Photobiology 68, 603 (1998).

    Article  Google Scholar 

  11. S. C. Vari, T. G. Papazolou, et al., “Intraoperative Metastase Detection by Laser Induced Fluorescence Spectroscopy,” Proc. SPIE 1426, 111 (1991).

    Article  ADS  Google Scholar 

  12. D. B. Solt and F. F. Farber, “New Principle for the Analysis of Chemical Carcinogenesis,” Nature 263, 701 (1976).

    Article  ADS  Google Scholar 

  13. F. S. Moreno, M. B. S. L. Rizzi, M. L. Z. Dagli, and M. V. C. Penteado, “Inhibitory Effects of β-Carotene on Preneoplasic Lesions Induced in Wistar Rats by the Resistant Hepatocyte Model,” Carcinogenesis 12, 1817 (1991).

    Google Scholar 

  14. F. N. Ghadially and W. J. P. Neish, “Porphyrin Fluorescence of Experimentally Induced Cell Carcinoma,” Nature 188, 1124 (1960).

    ADS  Google Scholar 

  15. D. M. Harris and J. Werkhaven, “Endogenous Porphyrin Fluorescence in Tumors,” Lasers Surg. Med. 7, 467 (1987).

    Google Scholar 

  16. J. Bloomer, “The Porphyries,” in Diseases of the Liver, Ed. by E. R. Schiff, M. F. Sorrel, and W. C. Maddrey (Lippincott-Raven, Philadelphia, 1999), Vol. 1, pp. 1151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcassa, J.C., Ferreira, J., Zucoloto, S. et al. Detection of hepatocarcinoma in rats by integration of the fluorescence spectrum: Experimental model. Laser Phys. 16, 827–832 (2006). https://doi.org/10.1134/S1054660X06050136

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X06050136

PACS numbers

Navigation