Skip to main content
Log in

Formation of Point Defect Clusters in Metals with Grain Boundaries under Irradiation

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations have been performed to investigate the defect structure evolution at different development stages of atomic displacement cascades with energies up to 50 keV in iron crystallites in the temperature range from 300 to 900 K. The number of surviving radiation defects in iron crystallites increases according to a power law with increasing energy of the primary knocked-on atom. An increase in the crystallite temperature slightly increases the number of surviving defects. It is found that atomic displacement cascades can lead to radiation-induced grain boundary migration due to the melting and crystallization of the radiation-damaged region. The crystallographic orientation of the irradiated free surface strongly affects the radiation damage behavior. Craters with adatom islands are formed on the (111) free surface, and vacancy loops are nucleated in the (110) near-surface region. Point defects aggregate into clusters of various types during the evolution of atomic displacement cascades. It is shown that the number of surviving point defect clusters can significantly decrease under uniaxial elastic compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kenik, E.A. and Busby, J.T., Radiation-Induced Degradation of Stainless Steel Light Water Reactor Internals, Mater. Sci. Eng. R, 2012, vol. 73, no. 7–8, pp. 67–83.

    Article  Google Scholar 

  2. Little, E.A., Development of Radiation Resistant Materials for Advanced Nuclear Power Plant, Mater. Sci. Technol., 2006, vol. 22, no. 5, pp. 491–518.

    Article  Google Scholar 

  3. Chernov, V.M., Radiation Properties of the Metal Structural Materials during Low Temperature Damaging Irradiation, Perspekt. Mater., 2018, no. 5, pp. 23–40.

  4. Chernov, V.M. and Moroz, K.A., Effect of Damaging Radiation on Low-Temperature Embrittlement of Metals, Atomnaya Energiya, 2017, vol. 122, no. 2, pp. 78–82.

    Google Scholar 

  5. Garud, Y.S., Low Temperature Creep and Irradiation Creep in Nuclear Reactor Applications: A Critical Review, Int. J. Pressure Vessels Piping, 2016, vol. 139–140, pp. 137–145.

    Article  Google Scholar 

  6. Adamson, R.B., Coleman, C.E., and Griffiths, M., Irradiation Creep and Growth of Zirconium Alloys: A Critical Review, J. Nucl. Mater., 2019, vol. 521, pp. 167–244. doi https://doi.org/10.1016/j.jnucmat.2019.04.021

    Article  ADS  Google Scholar 

  7. Ardell, A.J. and Bellon, P., Radiation-Induced Solute Segregation in Metallic Alloys, Curr. Opin. Solid State Mater. Sci., 2019, vol. 20, no. 3, pp. 115–139.

    Article  ADS  Google Scholar 

  8. Thuinet, L., Nastar, M., Martinez, E., Bouobda Moladje, G.F., Legris, A., and Soisson, F., Multiscale Modeling of Radiation Induced Segregation in Iron Based Alloys, Comput. Mater. Sci., 2018, vol. 149, pp. 324–335.

    Article  Google Scholar 

  9. Nordlund, K., Zinkle, S.J., Sand, A.E., Granberg, F., Averback, R.S., Stoller, R.E., Suzudo, T., Malerba, L., Banhart, F., Weber, W.J., Willaime, F., Dudarev, S.L., and Simeone, D., Primary Radiation Damage: A Review of Current Understanding and Models, J. Nucl. Mater., 2018, vol. 512, pp. 450–479.

    Article  ADS  Google Scholar 

  10. Osetsky, Y.N., Calder, A.F., and Stoller, R.E., How Do Energetic Ions Damage Metallic Surfaces?, Curr. Opin. Solid State Mater. Sci., 2015, vol. 19, no. 5, pp. 277–286.

    Article  ADS  Google Scholar 

  11. Stoller, R.E., Tamm, A., Beland, L.K., Samolyuk, G.D., Stocks, G.M., Caro, A., Slipchenko, L.V., Osetsky, Yu.N., Aabloo, A., Klintenberg, M., and Wang, Y., Impact of Short-Range Forces on Defect Production from High Energy Collisions, J. Chem. Theory Comput., 2016, vol. 12, no. 6, pp. 2871–2879.

    Article  Google Scholar 

  12. Psakhie, S.G., Zolnikov, K.P., Kryzhevich, D.S., and Zheleznyakov, A.V., Evolution of Atomic Collision Cascades in Vanadium Crystal with Internal Structure, Crystallogr. Rep., 2009, vol. 54, no. 6, pp. 1002–1010.

    Article  ADS  Google Scholar 

  13. Chen, D., Murakami, K., Abe, H., Li, Z., and Sekimura, N., Investigation of Interactions between Defect Clusters in Stainless Steels by bn Situ Irradiation at Elevated Temperatures, Acta Mater., 2019, vol. 163, pp. 78–90.

    Article  Google Scholar 

  14. Osetsky, Y.N., Barashev, A.V., and Zhang, Y., On the Mobility of Defect Clusters and Their Effect on Microstructure Evolution in FCC Ni under Irradiation, Materialia, 2018, vol. 4, pp. 139–146.

    Article  Google Scholar 

  15. Zolnikov, K.P., Korchuganov, A.V., Kryzhevich, D.S., Chernov, V.M., and Psakhie, S.G., Structural Changes in Elastically Stressed Crystallites under Irradiation, Nucl. Instrum. Meth. Phys. Res. B, 2015, vol. 352, pp. 43–46.

    Article  ADS  Google Scholar 

  16. Beeler, B., Asta, M., Hosemann, P., and Gronbech-Jensen, N., Effect of Strain and Temperature on the Threshold Displacement Energy in Body-Centered Cubic Iron, J. Nucl. Mater., 2016, vol. 474, pp. 113–119.

    Article  ADS  Google Scholar 

  17. Sivak, A.B., Romanov, V.A., and Chernov, V.M., Diffusion of Self-Point Defects in Body-Centered Cubic Iron Crystal Containing Dislocations, Crystallogr. Rep., 2010, vol. 55, no. 1, pp. 97–108.

    Article  ADS  Google Scholar 

  18. Sivak, A.B., Romanov, V.A., and Chernov, V.M., Influence of Stress Fields of Dislocations on Formation and Spatial Stability of Point Defects (Elastic Dipoles) in V and Fe Crystals, J. Nucl. Mater., 2013, vol. 323, pp. 380–387.

    Article  ADS  Google Scholar 

  19. Tikhonchev, M.Y. and Svetukhin, V.V., Threshold Energies of Atomic Displacements in α-Fe under Deformation: Molecular Dynamics Simulation, Tech. Phys. Lett., 2017, vol. 43, pp. 348–350.

    Article  ADS  Google Scholar 

  20. Mishin, Y., An Atomistic View of Grain Boundary Diffusion, Defect Diffus. Forum, 2015, vol. 363, pp. 1–11.

    Article  MathSciNet  Google Scholar 

  21. Poletaev, G.M., Zorya, I.V., Starostenkov, M.D., Rakitin, R.Yu., and Kokhanenko, D.V., Influence of Hydrogen Impurity in Palladium on Migration of Tilt Grain Boundaries, Russ. Phys. J., 2018, vol. 61, no. 7, pp. 1236–1240.

    Article  Google Scholar 

  22. Zolnikov, K.P., Korchuganov, A.V., Kryzhevich, D.S., and Psakhie, S.G., Dynamics of the Formation and Propagation of Nanobands with Elastic Lattice Distortion in Nickel Crystallites, Phys. Mesomech., 2018, vol. 21, no. 6, pp. 492–497. doi https://doi.org/10.24411/1683-805X-2017-00062

    Article  Google Scholar 

  23. Psakhie, S.G., Zolnikov, K.P., Kryzhevich, D.S., and Korchuganov, A.V., Key Role of Excess Atomic Volume in Structural Rearrangements at the Front of Moving Partial Dislocations in Copper Nanocrystals, Sci. Rep., 2019, vol. 9, p. 3867.

    Article  ADS  Google Scholar 

  24. Zolnikov, K.P., Korchuganov, A.V., and Kryzhevich, D.S., Anisotropy of Plasticity and Structural Transformations under Uniaxial Tension of Iron Crystallites, Comput. Mater. Sci., 2018, vol. 155, pp. 312–319.

    Article  Google Scholar 

  25. Kapustin, P.E., Tikhonchev, M.Yu., Sibatov, R.T., and Svetukhin, V.V., Simulation of Atomic Displacements Cascades in a-Zirconium near β-Nb-20% Zr Precipitate, Results Phys., 2019, vol. 12, pp. 175–177.

    Article  ADS  Google Scholar 

  26. Psakhie, S.G., Zolnikov, K.P., Kryzhevich, D.S., Zheleznyakov, A.V., and Chernov, V.M., Atomic Collision Cascades in Vanadium Crystallites with Grain Boundaries, Phys. Mesomech., 2009, vol. 12, no. 1–2, pp. 20–28.

    Article  Google Scholar 

  27. Arjhangmehr, A. and Feghhi, S.A.H., A Comparative Study of Primary Damage State in Ni and NiCr/NiFe with a Model Grain Boundary Structure, Comput. Mater. Sci., 2018, vol. 151, pp. 1–13.

    Article  Google Scholar 

  28. Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comp. Phys., 1995, vol. 117, pp. 1–19.

    Article  ADS  Google Scholar 

  29. Romanov, V.A., Sivak, A.V., and Chernov, V.M., Crystallographic, Energy, and Kinetic Properties of Intrinsic Point Defects and Their Clusters in BCC Iron, VANT. Materialoved. Nov. Mater., 2006, vol. 66, no. 1, pp. 129–232.

    Google Scholar 

  30. Malerba, L., Marinica, M.C., Anento, N., Bjorkas, C., Nguyen, H., Domain, C., Djurabekova, F., Olsson, P., Nordlund, K., Serra, A., Terentyev, D., Willaime, F., and Becquart, C.S., Comparison of Empirical Interatomic Potentials for Iron Applied to Radiation Damage Studies, J. Nucl. Mater., 2010, vol. 406, pp. 19–38.

    Article  ADS  Google Scholar 

  31. Weber, W.J., Duffy, D.M., Thome, L., and Zhang, Y., The Role of Electronic Energy Loss in bon Beam Modification of Materials, Curr. Opin. Solid State Mater. Sci., 2015, vol. 19, pp. 1–11.

    Article  ADS  Google Scholar 

  32. Stukowski, A., Visualization and Analysis of Atomistic Simulation Data with OVbTO—The Open Visualization Tool, Modelling Simul. Mater. Sci. Eng., 2010, vol. 18, p. 015012.

    Article  ADS  Google Scholar 

  33. Bjorkas, C. and Nordlund, K., Comparative Study of Cascade Damage in Fe Simulated with Recent Potentials, Nucl. Instrum. Methods Phys. Res. B, 2007, vol. 359, pp. 853–860.

    Article  ADS  Google Scholar 

  34. Yoshida, N. and Urban, K., An Investigation of the Temperature Dependence of the Threshold Energy for Atom Displacement in Electron-Irradiated Copper, Phys. Lett. A, 1980, vol. 75, pp. 231–233.

    Article  ADS  Google Scholar 

  35. Saile, B., The Temperature Dependence of the Effective Threshold Energy for Atom Displacement in Tantalum, Phys. Stat. Sol. A, 1985, vol. 89, pp. K143–145.

    Article  ADS  Google Scholar 

  36. Honeycutt, J.D. and Andersen, H.C., Molecular Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters, J. Phys. Chem., 1987, vol. 91, pp. 4950–4963.

    Article  Google Scholar 

  37. Zolnikov, K.P., Psakh’e, S.G., and Panin, V.E., Alloy Phase Diagrams Using Temperature, Concentration and Density as Variables, J. Phys. F. Met. Phys., 1986, vol. 16, p. 1145.

    Article  ADS  Google Scholar 

  38. Korchuganov, A.V., Zolnikov, K.P., Kryzhevich, D.S., Chernov, V.M., and Psakhie, S.G., Generation of Shock Waves in bron under brradiation, Nucl. Instrum. Methods Phys. Res. B, 2015, vol. 352, pp. 39–42.

    Article  ADS  Google Scholar 

  39. Donnelly, S.E. and Birtcher, R.C., bon-bnduced Spike Effects on Metal Surfaces, Philos. Mag. A, 1999, vol. 79, no. 1, pp. 133–145.

    Article  ADS  Google Scholar 

Download references

Funding

The studies were carried out as part of the Fundamental Research Program of the State Academies of Sciences for 2013–2020 (research line III.23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Zolnikov.

Additional information

Russian Text © The Author(s), 2019, published in Fizicheskaya Mezomekhanika, 2019, Vol. 22, No. 3, pp. 15–24.

Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolnikov, K.P., Korchuganov, A.V., Kryzhevich, D.S. et al. Formation of Point Defect Clusters in Metals with Grain Boundaries under Irradiation. Phys Mesomech 22, 355–364 (2019). https://doi.org/10.1134/S1029959919050023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959919050023

Keywords

Navigation