Skip to main content
Log in

The Degeneracy of Nonlinearity in a Turbulent System

  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

The dynamics of a statistically homogeneous isotropic magnetic field generated by an incompressible turbulent plasma flow with a large, yet finite magnetic Prandtl number is discussed. It has been found that, on scales smaller than the Kolmogorov viscosity scale, the nonlinear feedback of a magnetic field to the fluid dynamics decreases exponentially, despite the fast exponential growth of the magnetic field. It is shown that the anisotropy of diffusion in a cosmic plasma leads to an additional decrease in the feedback. It is demonstrated that the feedback degeneracy leads to an energy paradox, which is resolved at a later stage of the development of initial disturbances when the spatial scale of magnetic fluctuations approaches the Kolmogorov scale. The possibility of the nonlinearity degeneracy in more complex systems is discussed: a similar phenomenon can occur in hydrodynamic turbulence, which makes it possible to find a key to the theoretical analysis of the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. Note that, at Prm = 1, the initial dynamics of the magnetic field coincides with the initial dynamics of acoustic turbulence [3].

REFERENCES

  1. F. Rincon, J. Plasma Phys. 85, 205850401 (2019).

  2. R. M. Kulsrud and S. W. Anderson, Astrophys. J. 396, 606 (1992).

    Article  ADS  Google Scholar 

  3. S. I. Vainshtein and Ya. B. Zel’dovich, Sov. Phys. Usp. 15, 159 (1972).

    Article  ADS  Google Scholar 

  4. A. A. Schekochihin, S. C. Cowley, S. F. Taylor, J. L. Maron, and J. C. McWilliams, Astrophys. J. 612, 276 (2004).

    Article  ADS  Google Scholar 

  5. A. N. Kolmogorov, Dokl. Akad. Nauk 32, 19 (1941).

    ADS  Google Scholar 

  6. A. P. Kazantsev, Sov. Phys. JETP 26, 1031 (1967).

    ADS  Google Scholar 

  7. M. Chertkov, G. Falkovich, I. Kolokolov, and M. Vergassola, Phys. Rev. Lett. 83, 4065 (1999).

    Article  ADS  Google Scholar 

  8. A. Schekochihin, S. Cowley, J. Maron, and L. Malyshkin, Phys. Rev. E 65, 016305 (2001).

  9. K. P. Zybin, A. S. Il’yn, A. V. Kopyev, and V. A. Sirota, Europhys. Lett. 132, 24001 (2020).

    Article  Google Scholar 

  10. A. S. Il’yn, A. V. Kopyev, V. A. Sirota, and K. P. Zybin, Phys. Fluids 33, 075105 (2021).

  11. A. A. Schekochihin, S. A. Boldyrev, and R. M. Kulsrud, Astrophys. J. 567, 828 (2002).

    Article  ADS  Google Scholar 

  12. F. Plunian, R. Stepanov, and P. Frick, Phys. Rep. 523, 1 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  13. A. S. Richardson, NRL Plasma Formulary (US Naval Res. Labor., 2019).

  14. E. A. Novikov, Sov. Phys. JETP 20, 1290 (1964).

    ADS  Google Scholar 

  15. G. K. Batchelor, J. Fluid Mech. 5, 113 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  16. K. P. Zybin and V. A. Sirota, Phys. Usp. 58, 556 (2015).

    Article  ADS  Google Scholar 

  17. K. P. Iyer, K. R. Sreenivasan, and P. K. Yeung, Phys. Rev. Fluids 5, 054605 (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Zybin.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zybin, K.P., Il’yn, A.S., Kopyev, A.V. et al. The Degeneracy of Nonlinearity in a Turbulent System. Dokl. Phys. 67, 278–281 (2022). https://doi.org/10.1134/S1028335822090166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335822090166

Keywords:

Navigation