Skip to main content
Log in

Study of the Nanostructure of Oxide Dispersion-Strengthened Steels with Small-Angle Neutron Scattering

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Oxide dispersion-strengthened steels are among the most promising materials for Generation IV reactor installations and thermonuclear power generation due to their high heat resistance, which is achieved by a significant number of uniformly distributed oxide particles. These materials can withstand temperatures up to 700°C and mitigate radiation-induced swelling within 200 dpa. The enhanced properties of such steels significantly depend on the specifics of their nanostructure, namely, the size and spatial distribution of dispersive inclusions (oxide particles and clusters). In this study, small-angle neutron scattering is applied to characterize the nanostructure of oxide dispersion-strengthened steels. This method enables the analysis of a large volume of material while retaining the ability to detect features such as clusters with sizes in the range of a few nanometers. The investigated steels have different alloying systems, varying in their concentration of Cr, V, W, Al, and Zr. Small-angle neutron scattering enables determination of the characteristic sizes of nanoscale inclusions in oxide dispersion-strengthened steels and their number densities. The results of small-angle neutron scattering are compared to the findings of transmission electron microscopy and atom-probe tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. R. L. Klueh, J. P. Shingledecker, R. W. Swindeman, and D. T. Hoelzer, J. Nucl. Mater. 341, 103 (2005). https://www.doi.org/10.1016/j.jnucmat.2005.01.017

    Article  ADS  CAS  Google Scholar 

  2. S. Ukai, M. Fujiwara, J. Nucl. Mater. 307–311, 749 (2002). https://www.doi.org/10.1016/S0022-3115(02)01043-7

    Article  ADS  Google Scholar 

  3. R. Lindau, A. Möslang, M. Rieth, M. Klimiankou, Materna-E. Morris, A. Alamo, A.-A.F. Tavassoli, C. Cayron, A.-M. Lancha, P. Fernandez, N. Baluc, R. Schäublin, E. Diegele, G. Filacchioni, J. W. Rensman, B. v. Schaafd, E. Lucon, and W. Dietz, Fusion Eng. Des. 75, 989 (2005). https://www.doi.org/10.1016/j.fusengdes.2005.06.186

    Article  Google Scholar 

  4. M. Klimiankou, R. Lindau, and A. Möslang, J. Nucl. Mater. 329, 347 (2004). https://www.doi.org/10.1016/j.jnucmat.2004.04.083

    Article  ADS  Google Scholar 

  5. S. V. Rogozhkin, A. A. Bogachev, D. I. Kirillov, A. A. Nikitin, N. N. Orlov, A. A. Aleev, A. G. Zaluzhnyi, and M. A. Kozodaev, Phys. Met. Metallogr. 115, 1259 (2014). https://www.doi.org/10.1134/S0031918X14120060

    Article  ADS  Google Scholar 

  6. S. V. Rogozhkin, A. A. Aleev, A. G. Zaluzhnyi, A. A. Nikitin, N. A. Iskandarov, P. Vladimirov, R. Lindau, and A. Möslang, J. Nucl. Mater. 40, 99 (2011). https://www.doi.org/10.1016/j.jnucmat.2010.09.021

    Google Scholar 

  7. S. V. Rogozhkin, N. N. Orlov, A. A. Nikitin, A. A. Aleev, A. G. Zaluzhny, M. A. Kozodaev, R. Lindau, A. Möslang, and P. Vladimirov, Inorg. Mater.: Appl. Res. 6, 151 (2015). https://www.doi.org/10.1134/S2075113315020136

    Article  Google Scholar 

  8. N. Oono and S. Ukai, Mater. Trans. 59, 651 (2018). https://www.doi.org/10.2320/matertrans.M2018110

    Article  Google Scholar 

  9. S. V. Rogozhkin, A. A. Khomich, A. V. Klauz, A. A. Bogachev, Y. E. Gorshkova, G. D. Bokuchava, A. A. Nikitin, A. A. Lukyanchuk, O. A. Raznitsyn, A. S. Shutov, and A. G. C. Zaluzhny, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 16, 1189 (2022). https://www.doi.org/10.1134/S1027451022060490

    Article  CAS  Google Scholar 

  10. R. Coppola, M. Klimiankou, R. Lindau, R. P. May, and M. Valli, Phys. B (Amsterdam, Neth.) 350, 545 (2004). https://www.doi.org/10.1016/j.physb.2004.03.148

  11. P. He, P. Gao, Q. Tian, J. Lv, and W. Yao, Mater. Lett. 209, 535 (2017). https://www.doi.org/10.1016/j.matlet.2017.08.051

    Article  CAS  Google Scholar 

  12. S. V. Rogozhkin, A. A. Khomich, A. A. Bogachev, A. A. Nikitin, V. V. Khoroshilov, A. A. Lukyanchuk, O. A. Raznitsyn, A. S. Shutov, A. L. Vasiliev, and M. Yu. Presniakov, Phys. At. Nucl. 83, 1425 (2020). https://www.doi.org/10.1134/S1063778820100191

    Article  CAS  Google Scholar 

  13. S. V. Rogozhkin, A. A. Khomich, A. V. Klauz, A. A. Bogachev, Y. E. Gorshkova, G. D. Bokuchava, A. A. Nikitin, A. A. Lukyanchuk, O. A. Raznitsyn, A. S. Shutov, and A. G. Zaluzhny, J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech. 16, 1189 (2022). https://www.doi.org/10.1134/S1027451022060490

    Article  CAS  Google Scholar 

  14. Small Angle Neutron Scattering Instrument–“Yellow Submarine” (Budapest Neutron Centre, 2023). https://www.bnc.hu/?q=ys-sans

  15. L. Almásy, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 15, 527 (2021). https://www.doi.org/10.1134/S1027451021030046

    Article  Google Scholar 

  16. BerSANS (Paul Scherrer Institut, 2023). https://www.psi.ch/en/sinq/sansi/bersans.

  17. S. V. Rogozhkin, A. V. Klauz, A. A. Bogachev, A. A. Khomich, A. A. Nikitin, A. A. Luk’yanchuk, O. A. Raznitsyn, A. S. Shutov, A. A. Khalyavina, and A. G. Zaluzhnyi, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 17, Suppl. 1, S282 (2023). https://www.doi.org/10.1134/S1027451023070431

  18. P.-L. Gao, J. Gong, Q. Tian, G.-A. Sun, H.-Y. Yan, L. Chen, L.-F. Bai, Zh.-M. Guo, and X. Ju, Chin. Phys. 31, 056102 (2022). https://www.doi.org/ 10.1088/1674-1056/ac43aa

    Article  ADS  Google Scholar 

  19. H. Dawson, M. Serrano, S. Cater, N. Iqbal, L. Almasy, Q. Tian, and E. Jimenez-Melero, J. Nucl. Mater. 486, 129 (2017). https://www.doi.org/10.1016/j.jnucmat.2016.12.033

    Article  ADS  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Dr. P. Vladimirov from the Karlsruhe Institute of Technology (Germany) and Prof. A. Kimura from Kyoto University (Japan) for providing samples of ODS steels. Atom-probe tomography measurements were performed using equipment of the KAMICS Center for Collective Use (http://kamiks.itep.ru/) of the National Research Centre “Kurchatov Institute.”

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-1352).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Rogozhkin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogozhkin, S.V., Gorshkova, Y.E., Bokuchava, G.D. et al. Study of the Nanostructure of Oxide Dispersion-Strengthened Steels with Small-Angle Neutron Scattering. J. Surf. Investig. 17 (Suppl 1), S6–S11 (2023). https://doi.org/10.1134/S102745102307042X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745102307042X

Keywords:

Navigation