Skip to main content
Log in

Comprehensive Analysis of Nanostructure of Oxide Dispersion-Strengthened Steels by Ultramicroscopy Methods

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The characterization of the nanostructure of modern oxide dispersion strengthened steels requires a comprehensive analysis using complementary techniques. In this work, the methods of small-angle X-ray scattering, transmission electron microscopy and atom probe tomography have been applied to several oxide dispersion strengthened steels. Comparison of the obtained results allows the most correct characterization of inclusion types and their number in the studied materials. It is shown that most of the studied steels contain oxide inclusions and nanosized clusters enriched in O and Y, as well as V, Ti, Al, and Zr, depending on the initial steel composition. Transmission electron microscopy and atom probe tomography provide detailed information about the inclusion types, and small-angle X-ray scattering gives the most accurate estimation of the average density of inclusions in large volumes of material. The importance of the correct determination of the inclusion types for hardening calculations is shown, the results of such calculations are compared with microhardness measurements. The calculated values of hardness for the studied steels are in the range 2.7–4.3 GPa, which is well confirmed by microhardness measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. B. Mouawad, X. Boulnat, D. Fabrègue, M. Perez, and Y. de Carlan, J. Nucl. Mater. 465, 54 (2015). https://doi.org/10.1016/j.jnucmat.2015.05.053

    Article  CAS  Google Scholar 

  2. S. V. Rogozhkin, A. A. Khomich, A. A. Bogachev, A. A. Nikitin, V. V. Khoroshilov, A. A. Lukyanchuk, O. A. Raznitsyn, A. S. Shutov, A. L. Vasiliev, and M. Yu. Presniakov, Phys. At. Nucl. 83, 1425 (2020). https://doi.org/10.1134/S2079562920010121

    Article  CAS  Google Scholar 

  3. N. Oono and S. Ukai, Mater. Trans. 59, 1651 (2018). https://doi.org/10.2320/matertrans.M2018110

    Article  CAS  Google Scholar 

  4. R. Coppola, M. Klimiankou, R. Lindau, R. P. May, and M. Valli, Phys. B (Amsterdam, Neth.) 350, e545(2004). https://doi.org/10.1016/j.physb.2004.03.148

  5. S. V. Rogozhkin, A. A. Aleev, A. A. Lukyanchuk, A. S. Shutov, O. A. Raznitsyn, and S. E. Kirillov, Instrum. Exp. Tech. 60, 428 (2017). https://doi.org/10.1134/S002044121702021X

    Article  Google Scholar 

  6. O. A. Raznitsyn, A. A. Lukyanchuk, A. S. Shutov, and S. V. Rogozhkin, J. Anal. Chem. 72, 1404 (2017). https://doi.org/10.1134/S1061934817140118

    Article  CAS  Google Scholar 

  7. A. A. Aleev, S. V. Rogozhkin, A. A. Lukyanchuk, A. S. Shutov, O. A. Raznitsyn, A. A. Nikitin, N. A. Iskandarov, O. A. Korchuganova, and S. E. Kirillov, Certificate of State Registration of a Computer Program No. 2018661876 (September 20, 2018). https://www1.fips.ru/ofpstorage/Doc/IZPM/RUNWC1/ 000/000/002/702/112/%D0%98%D0%97-02702112-00001/document.pdf.

  8. B. Gault, M. Müller, A. La Fontaine, M. P. Moody, A. Shariq, A. Cerezo, S. P. Ringer, and G. D. W. Smith, J. Appl. Phys. 108, 044904 (2010). https://doi.org/10.1063/1.3462399

    Article  CAS  Google Scholar 

  9. M. K. Miller and O. Ridge, Rev. Sci. Instrum. 78, 031101 (2007). https://doi.org/10.1063/1.2709758

    Article  CAS  Google Scholar 

  10. A. Cerezo and L. Davin, Surf. Interface Anal. 39, 184 (2007). https://doi.org/10.1002/sia.2486

    Article  CAS  Google Scholar 

  11. A. Guinier and G. Fournet, Polym. Sci. 19, 594 (1955). https://doi.org/10.1002/pol.1956.120199326

    Article  Google Scholar 

  12. M. Doucet, J.H. Cho, and G. Alina, Zenodo 1, 1 (2017). https://doi.org/10.5281/zenodo.438138

    Article  Google Scholar 

  13. G. E. Lucas, J. Nucl. Mater. 206, 287 (1993). https://doi.org/10.1016/0022-3115(93)90129-M

    Article  CAS  Google Scholar 

  14. S. Xu, Z. Zhou, and H. Jia, Steel Res. Int. 90, 1800594 (2018). https://doi.org/10.1002/srin.201800594

    Article  CAS  Google Scholar 

  15. M. Klimenkov, R. Lindau, and A. Möslang, J. Nucl. Mater. 386, 553 (2009). https://doi.org/10.1134/S1063778818120049

    Article  Google Scholar 

  16. D. Bhattacharyya, P. Dickerson, G. R. Odette, S. A. Maloy, A. Misra, and M. Nastsi, Philos. Mag. 92, 2089 (2012). https://doi.org/10.1080/14786435.2012.662760

    Article  CAS  Google Scholar 

  17. L. Hsiung, M. Fluss, S. Tumey, J. Kuntz, B. El-Dasher, M. Wall, B. Choi, A. Kimura, F. Willaime, and Y. Serruys, J. Nucl. Mater. 409, 72 (2011). https://doi.org/10.1016/j.jnucmat.2010.09.014

    Article  CAS  Google Scholar 

  18. N. H. Oono, S. Ukai, S. Hayashi, S. Ohtsuka, T. Kaito, A. Kimura, T. Torimaru, and K. Sakamoto, J. Nucl. Mater. 493, 180 (2017). https://doi.org/10.1016/j.jnucmat.2017.06.018

    Article  CAS  Google Scholar 

  19. P. Song, A. Kimura, K. Yabuuchi, P. Dou, H. Watanabe, J. Gao, and Y. Huang, J. Nucl. Mater. 529, 151953 (2020). https://doi.org/10.1016/j.jnucmat.2019.151953

    Article  CAS  Google Scholar 

  20. M. J. Swenson, C. K. Dolph, and J. P. Wharry, J. Nucl. Mater. 479, 426 (2016). https://doi.org/10.1016/j.jnucmat.2016.07.022

    Article  CAS  Google Scholar 

  21. E. Gil, N. Ordás, C. García-Rosales, and I. Iturriza, Fusion Eng. Des. 98, 1973 (2015). https://doi.org/10.1016/j.fusengdes.2015.06.010

    Article  CAS  Google Scholar 

  22. K. J. Han, T. S. Byun, D. T. Hoelzer, C. H. Park, J. Yeom, and Jae-Keun Hong, Mater. Sci. Eng., A 559, 111 (2013). https://doi.org/10.1016/j.msea.2012.08.041

    Article  CAS  Google Scholar 

  23. A. P. Gulyaev and N. A. Kozlova, in Special Steels and Alloys: Collection of Works (Metallurgiya, Moscow, 1966), Vol. 46, p. 58.

    Google Scholar 

  24. A. Chauhan, F. Bergner, A. Etienne, J. Aktaa, Y. de Carlan, C. Heintze, D. Litvinov, M. Hernandez-Mayoral, E. Onorbe, B. Radiguet, and A. Ulbricht, J. Nucl. Mater. 495, 6 (2017). https://doi.org/10.1016/j.jnucmat.2017.07.060

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Dr. P. Vladimirov from the Karlsruhe Institute of Technology (Germany), Prof. A. Kimura from the Kyoto University (Japan) and Dr. T.K. Kim from the Korean Atomic Energy Research Institute (Republic of Korea) for providing samples of the ODS steels.

Funding

The work was supported financially by the Ministry of Science and Higher Education of the Russian Federation (Agreement no. 075-15-2021-1352). Tomographic atom probe analysis was performed using the equipment of the KAMIKS Shared Use Center (https://ckp-rf.ru/ckp/ 502001/) of the NRC “Kurchatov Institute.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Rogozhkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogozhkin, S.V., Khomich, A.A., Klauz, A.V. et al. Comprehensive Analysis of Nanostructure of Oxide Dispersion-Strengthened Steels by Ultramicroscopy Methods. J. Surf. Investig. 16, 1189–1200 (2022). https://doi.org/10.1134/S1027451022060490

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022060490

Keywords:

Navigation