Skip to main content
Log in

Hybrid positron-source scheme intended for the SPARC accelerator facility at the LNF

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A hybrid positron-source scheme based on an electron beam of the Sorgente Pulsata e Amplificata di Radiazione Coerente test facility installed at the Laboratori Nazionali di Frascati (Frascati, Italy) is proposed. In the case of a thin (0.1-mm-thick) amorphous converter, the positron yields per primary electron are compared at positron energies of 1–3 MeV under bremsstrahlung generation and (110)-plane channeling conditions. The radiation of 200-MeV electrons (200 MeV is the parameter of the SPARC accelerator at the LNF) channeled in a 10-µm-thick tungsten radiator is demonstrated to create positron yields of 104–105 s–1 in a 0.1-mm-thick W converter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. N. Meshkov, Phys. Part. Nucl. 28, 198 (1997). doi: 10.1134/1.953037

    Article  Google Scholar 

  2. I. N. Meshkov, in Proceedings of the International Symposium on Hadronic Atoms and Positronium in the Standard Model (Dubna, 1998), 176.

    Google Scholar 

  3. I. N. Meshkov and A. N. Skrinsky, Nucl. Instrum. Methods Phys. Res. A 391, 205 (1997).

    Article  Google Scholar 

  4. J. P. Merrison, H. Bluhme, N. Hertel, et al., in Proceedings of the 20th International Conference on the Physics of Electronic and Atomic Collisions (Vienna, Austria, 1997), p. 210.

    Google Scholar 

  5. K. Yoshida, K. Goto, T. Isshiki, et al., Phys. Rev. Lett. 80, 1437 (1998).

    Article  Google Scholar 

  6. V. N. Baier, A. D. Bukin, T. V. Dimova, et al., Nucl. Instrum. Methods Phys. Res. B 145, 221 (1998).

    Article  Google Scholar 

  7. B. N. Kalinin, G. A. Naumenko, A. P. Potylitsin, et al., Nucl. Instrum. Methods Phys. Res. B 145, 209 (1998).

    Article  Google Scholar 

  8. M. Inoue, S. Takenaka, K. Yoshida, et al., Nucl. Instrum. Methods Phys. Res. B 173, 104 (2001).

    Article  Google Scholar 

  9. R. Chehab, R. Cizeron, C. Sylvia, et al., Phys. Lett. B 525, 41 (2002).

    Article  Google Scholar 

  10. V. A. Dolgikh, Yu. P. Kunashenko, and Yu. L. Pivovarov, Nucl. Instrum. Methods Phys. Res. B 201, 253 (2003).

    Article  Google Scholar 

  11. X. Artru, R. Chehab, M. Chevallier, et al., Nucl. Instrum. Methods Phys. Res. B 266, 3868 (2008).

    Article  Google Scholar 

  12. G. Alexander, J. Barley, Y. Batygin, et al., Phys. Rev. Lett. 100, 210801 (2008).

    Article  Google Scholar 

  13. H. Backe, P. Kunz, W. Laulh, et al., Nucl. Instrum. Methods Phys. Res. B 266, 3835 (2008).

    Article  Google Scholar 

  14. V. N. Baier, V. M. Katkov, and V. M. Strakhovenko, Electromagnetic Processes at High Energy in Oriented Single Crystals (World Scientific, Singapore, 1998).

    Book  Google Scholar 

  15. E. G. Vyatkin, Yu. L. Pivovarov, and S. A. Vorobiev, Nucl. Phys. B 284, 509 (1987).

    Article  Google Scholar 

  16. O. V. Bogdanov, E. I. Fiks, K. B. Korotchenko, Yu. L. Pivovarov, and T. A. Tukhfatullin, J. Phys.: Conf. Ser. 236, 1 (2010). doi:10.1088/1742-6596/236/1/012029

    Google Scholar 

  17. S. V. Abdrashitov, O. V. Bogdanov, S. B. Dabagov, Yu. L. Pivovarov, and T. A. Tukhfatullin, Nucl. Instrum. Methods Phys. Res. B 309 (2013). doi: 10.1016/j.nimb.2013.02.020

    Google Scholar 

  18. H. W. Koch and J. W. Motz, Rev. Mod. Phys. 31, 920 (1959).

    Article  Google Scholar 

  19. A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics (Nauka, Moscow, 1981; Wiley, New York, 1965)

    Google Scholar 

  20. A. N. Kalinovskii, N. V. Mokhov, and Yu. P. Nikitin, Passage of High-Energy Particles through Matter (Amer. Inst. Physics, New York, 1989).

    Google Scholar 

  21. W. Heitler, The Quantum Theory of Radiation (Oxford Univ. Press, London, 1957).

    Google Scholar 

  22. SPARC Parameters. http://www.lnf.infn.it/acceleratori/sparc/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Tukhfatullin.

Additional information

Original Russian Text © S.B. Dabagov, S.V. Abdrashitov, O.V. Bogdanov, Yu.L. Pivovarov, T.A. Tukhfatullin, 2016, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, 2016, No. 2, pp. 100–107.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dabagov, S.B., Abdrashitov, S.V., Bogdanov, O.V. et al. Hybrid positron-source scheme intended for the SPARC accelerator facility at the LNF. J. Surf. Investig. 10, 254–260 (2016). https://doi.org/10.1134/S1027451016010237

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451016010237

Keywords

Navigation