Skip to main content
Log in

Rotational Dependence of Line Half-width for 0 0 0 11–0 0 0 01 Fundamental Band of CO2 Confined in Aerogel Nanopores

  • SPECTROSCOPY OF AMBIENT MEDIUM
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The absorption spectrum of carbon dioxide confined in aerogel has been measured in the 2250–2400 cm–1 region for the first time with the use of a Bruker IFS 125HR FTIR spectrometer. The dependence of CO2 half-widths on rotational quantum numbers was studied and compared with literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Yu. N. Ponomarev, T. M. Petrova, A. M. Solodov, and A. A. Solodov, “IR spectroscopy of water vapor confined in nanoporous silica aerogel,” Opt. Express 18 (25), 26 062–26 067 (2010).

    Article  Google Scholar 

  2. T. M. Petrova, Yu. N. Ponomarev, A. A. Solodov, A. M. Solodov, and A. F. Danilyuk, “Spectroscopic nanoporometry of aerogel,” JETP Lett. 101, 65–67 (2015).

    Article  ADS  Google Scholar 

  3. A. A. Solodov, T. M. Petrova, Yu. N. Ponomarev, and A. M. Solodov, “Influence of nanoconfinement on the rotational dependence of line half-widths for 2-0 band of carbon oxide,” Chem. Phys. Lett. 637, 18–21 (2015).

    Article  ADS  Google Scholar 

  4. A. A. Solodov, T. M. Petrova, Yu. N. Ponomarev, A. M. Solodov, and E. A. Glazkova, “Rotational dependences of line half-widths for CO and CO2 confined in SiO2/Al2O3 xerogel,” Mol. Phys. 115 (14), 1708–1712 (2017).

    Article  ADS  Google Scholar 

  5. A. A. Solodov, T. M. Petrova, Yu. N. Ponomarev, A. M. Solodov, and A. F. Danilyuk, “FTIR spectroscopy of 2-0 band of carbon monoxide confined in silica aerogels with different pore sizes,” Mol. Phys. 117 (1), 67–70 (2019).

    Article  ADS  Google Scholar 

  6. T. M. Petrova, Yu. N. Ponomarev, A. A. Solodov, A. M. Solodov, and A. F. Danilyuk, “Line broadening of carbon dioxide confined in nanoporous aerogel,” Proc. SPIE—Int. Soc. Opt. Eng. 10035, 100350 (2016).

  7. J.-M. Hartmann, V. Sironneau, C. Boulet, T. Svensson, J. T. Hodges, and C. T. Xu, “Infrared absorption by molecular gases as a probe of nanoporous silica xerogel and molecule-surface collisions: Low-pressure results,” Phys. Rev. A 87, 042506 (2013).

    Article  Google Scholar 

  8. J.-M. Hartmann, C. Boulet, AuweraJ. Vander, H. El. Hamzaoui, B. Capoen, and M. Bouazaoui, “Line broadening of confined CO gas: From molecule-wall to molecule-molecule collisions with pressure,” J. Chem. Phys. 140, 064302 (2014).

    Article  ADS  Google Scholar 

  9. J.-M. Hartmann, V. Sironneau, C. Boulet, T. Svensson, J. T. Hodges, and C. T. Xu, “Collisional broadening and spectral shapes of absorption lines of free and nanopore-confined O2 gas,” Phys. Rev. A 87, 032510 (2013).

    Article  ADS  Google Scholar 

  10. J.-M. Hartmann, Auwera J. Vander, C. Boulet, M. Birot, M.-A. Dourges, T. Toupance, H. El. Hamzaoui, P. Ausset, Y. Carre, L. Kocon, B. Capoen, and M. Bouazaoui, “Infrared absorption by molecular gases to probe porous materials and comparisons with other techniques,” Micropor. Mesopor. Mater. 237, 31–37 (2017).

    Article  Google Scholar 

  11. T. Svensson, E. Adolfsson, M. Burresi, R. Savo, Xu. Can, D. S. Wiersma, and S. Svanberg, “Pore size assessment based on wall collision broadening of spectral lines of confined gas: Experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes,” Appl. Phys. B 110 (2), 147–154 (2013).

    Article  ADS  Google Scholar 

  12. T. Svensson, M. Lewander, and S. Svanberg, “Laser absorption spectroscopy of water vapor confined in nanoporous alumina: Wall collision line broadening and gas diffusion dynamics,” Opt. Express 18 (16), 16460–16473 (2010).

    Article  ADS  Google Scholar 

  13. I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Csaszar, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Auwera Vander, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, and E. J. Zak, “The HIT-RAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).

    Article  ADS  Google Scholar 

  14. D. R. Rolison and B. Dunn, “Electrically conductive oxide aerogels: new materials in electrochemistry,” J. Mater. Chem. 11, 963–980 (2001).

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation (grant no. 18-72-00145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Petrova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solodov, A.A., Petrova, T.M., Ponomarev, Y.N. et al. Rotational Dependence of Line Half-width for 0 0 0 11–0 0 0 01 Fundamental Band of CO2 Confined in Aerogel Nanopores. Atmos Ocean Opt 32, 619–621 (2019). https://doi.org/10.1134/S1024856019060150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856019060150

Keywords:

Navigation