Skip to main content
Log in

Raman gas-analyzer for analyzing environmental and technogenic gas media

  • Optical Instrumentation
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The improvement of the sensitivity of the Raman gas-analyzer using a multireflection optical system and gas media compression has been studied. It was shown that both methods have a high efficiency. However, when gas is compressed, one must take into account the variations in position and form of Q branches for molecular vibrational bands and the variations in their differential cross sections. Methods for further improving the Raman gas analyzer sensitivity are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Raman Effect, Vol. 2: Applications, Ed. by A. Anderson (Marcel Dekker, New York, 1973).

    Google Scholar 

  2. Raman Spectroscopy in Gases and Liquids, Ed. by A. Weber (Springer-Verlag, Berlin, 1979).

    Google Scholar 

  3. M. A. Buldakov, I. I. Matrosov, and A. A. Tikhomirov, “State-of-the-Art and Tendencies in Gas-Analytical Instrument-Making Intended for Monitoring of Industrial Emissions into the Atmosphere,” Optika Atmos. Okeana 22(1), 52–57 (2009).

    Google Scholar 

  4. Handbook of Raman Spectroscopy: from the Research Laboratory to the Process Line, Ed. by I. R. Lewis and H. G. M. Edwards (Marcel Dekker, New York, 2001).

    Google Scholar 

  5. J. R. Ferraro, Kazuo Nakamoto, and C. W. Brown, Introductory Raman Spectroscopy (Academic Press, San Diego, 2003).

    Google Scholar 

  6. P. C. Miles, “Raman Line Imaging for Spatially and Temporally Resolved Mole Fraction Measurements in Internal Combustion Engines,” Appl. Opt. 38(9), 1714–1732 (1999).

    Article  ADS  Google Scholar 

  7. M. Taschek, J. Egermann, S. Schwarz, and A. Leipertz, “Quantitative Analysis of the Near-Wall Mixture Formation Process in a Passenger Car Direct-Injection Diesel Engine by Using Linear Raman Spectroscopy,” Appl. Opt. 44(31), 6606–6615 (2005).

    Article  ADS  Google Scholar 

  8. H. Zhao and S. Zhang, “Quantitative Measurements of In-Cylinder Gas Composition in a Controlled Auto-Ignition Combustion Engine,” Meas. Sci. and Technol. 19(1), 10 (2008).

    Article  Google Scholar 

  9. R. W. Dibble, A. R. Masri, and R. W. Bilger, “The Spontaneous Raman Scattering Technique Applied to Nonpremixed Flames of Methane,” Combust. Flame 67(3), 189–206 (1987).

    Article  Google Scholar 

  10. T. S. Cheng, J. A. Wehrmeyer, and R. W. Pitz, “Simultaneous Temperature and Multispecies Measurement in a Lifted Hydrogen Diffusion Flame,” Combust. Flame 91(3–4), 323–345 (1992).

    Article  Google Scholar 

  11. A. Brockhinke, P. Andresen, and K. Kohse-Höinghaus, “Quantitative One-Dimensional Single-Pulse Multi-Species Concentration and Temperature Measurement in the Lift-Off Region of a Turbulent H2/Air Diffusion Flame,” Appl. Phys., B 61(6), 533–545 (1995).

    Article  ADS  Google Scholar 

  12. S. B. Hansen, R. W. Berg, and E. H. Stenby, “High-Pressure Measuring Cell for Raman Spectroscopic Studies of Natural Gas,” Appl. Spectrosc. 55(1), 55–60 (2001).

    Article  ADS  Google Scholar 

  13. J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and Characterization of a Raman-Scattering-Based Sensor System for Temporally Resolved Gas Analysis and Its Application in a Gas Turbine Power Plant” Meas. Sci. and Technol. 19(8), 9 (2008).

    Article  Google Scholar 

  14. S. C. Eichmann, M. Weschta, J. Kiefer, T. Seeger, and A. Leipertz, “Characterization of a Fast Gas Analyzer Based on Raman Scattering for the Analysis of Synthesis Gas,” Rev. Sci. Instrum. 81(12), 7 (2010).

    Article  Google Scholar 

  15. S. Schorsch, J. Kiefer, S. Steuer, T. Seeger, A. Leipertz, S. Gonschorek, B. Abröll, and M. Käβ, “Entwicklung eines Echtzeitanalyse-systems zur Charakterisierung von Brenngasgemischen in Gasturbinenkraftwerken,” Chem. Ing. Tech. 83(3), 247–253 (2011).

    Article  Google Scholar 

  16. M. A. Buldakov, I. I. Ippolitov, B. V. Korolev, I. I. Matrosov, A. E. Cheglokov, V. N. Cherepanov, Yu. S. Makushkin, and O. N. Ulenikov, “Vibration Rotation Raman Spectroscopy of Gas Media,” Spectrochim. Acta, A 52(8), 995–1007 (1996).

    Article  ADS  Google Scholar 

  17. Yu. F. Arshinov and S. M. Bobrovnikov, “RS Lidars for Remote Control of Industrial Air Pollutions,” in Regional Monitoring of the Atmosphere, Pt. 2. New Measurement Instruments and Techniques, Ed. by M. V. Kabanov (Izd-vo SB RAS, Tomsk, 1997) [in Russian].

    Google Scholar 

  18. Yu. F. Arshinov, S. M. Bobrovnikov, I. B. Serikov, D. I. Shelefontyuk, V. K. Shumskii, P. V. Bazylev, V. A. Lugovoi, and N. N. Stolyarov, “Calibration of a Raman-Lidar Gas Analyzer of Atmospheric Emissions from Plant Stacks Using a Remote Gas Chamber,” Atmos. Ocean. Opt. 10(3), 221–224 (1997).

    Google Scholar 

  19. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Ed. by C. Weitkamp (Springer, New York, 2005).

    Google Scholar 

  20. Laser Remote Sensing, Ed. by Takashi Fujii and Tetsuo Fukuchi (Taylor & Francis, New York, 2005).

    Google Scholar 

  21. R. L. McCreery, Raman Spectroscopy for Chemical Analysis (John Wiley & Sons, New York, 2000).

    Book  Google Scholar 

  22. E. Smith and G. Dent, Modern Raman Spectroscopy—A Practical Approach (John Wiley & Sons, New York, 2005).

    Google Scholar 

  23. P. F. Jessen and A. G. Gaydon, “Study of the Absorption Spectra of Free Radicals in Flames,” Combust. Flame 11(1), 11–16 (1967).

    Article  Google Scholar 

  24. W. Kiefer, H. J. Bernstein, H. Wieser, and M. Danyluk, “The Vapor-Phase Raman Spectra and the Ring-Puckering Vibration of Some Deuterated Analogs of Trimethylene Oxide,” J. Mol. Spectrosc. 43(3), 393–400 (1972).

    Article  ADS  Google Scholar 

  25. J. Bendtsen, “The Rotational and Rotation-Vibrational Raman Spectra of 14N2, 14N15N, and 15N2,” J. Raman Spectrosc. 2(2), 133–145 (1974).

    Article  ADS  Google Scholar 

  26. M. A. Buldakov, B. V. Korolev, I. I. Matrosov, and T. N. Popova, “Overtone Bands in RS Spectra of Nitrogen and Oxygen,” Optika i Spektroskopiya 63(4), 775–777 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.A. Buldakov, I.I. Matrosov, D.V. Petrov, A.A. Tikhomirov, 2012, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buldakov, M.A., Matrosov, I.I., Petrov, D.V. et al. Raman gas-analyzer for analyzing environmental and technogenic gas media. Atmos Ocean Opt 25, 298–303 (2012). https://doi.org/10.1134/S1024856012040057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856012040057

Keywords

Navigation